
Objective Bayesian 

Hypothesis Testing 
ALEX DENG @ MICROSOFT 2015

THE 1ST WORKSHOP ON OFFLINE AND ONLINE EVALUATION OF WEB-BASED SERVICES





Crazy? Not Entirely

 Many published research findings found not reproducible. 

 Notable/Surprising results even more so

“The fluctuating female vote: Politics, religion, and the ovulatory cycle”

 P-value hack

 Multiple testing: different testing methods used by different groups of 

researchers repeatedly on the same data

 Optional stopping: stop recruiting subjects once the test is “statistically 

significant”

 File Drawer Effect and Publication Bias



Pathology of Null Hypothesis 

Statistical Testing

 Null and Alternative is asymmetric.

 Test only try to reject null, and gather evidence against the null

 Even with infinite data, will never accept the null with 100% confidence

 Multiple testing

 Optional Stopping/Early stopping

 “Genuine” Prior information not used

 Researchers motivated to publish counter-intuitive results, which are 

more often not reproducible



Frequentist NHST’s philosophy is 

opportunistic

-Brad Efron, A 250-YEAR ARGUMENT: BELIEF, BEHAVIOR, AND THE 

BOOTSTRAP



Frequentist vs Bayesian: Two Trial 

Systems

 Frequentist:

 One group of jury, with presumption of innocence, reckoning 
evidence of being guilty

 Bayesian:

 Two groups of jury, one reckon the evidence of being guilty, the other 
reckon the evidence of being innocent

 Judge make final decision based on decisions of both jury, together 
with prior belief

 Benefit of two jury system

 Symmetry

 Principled, not opportunistic anymore. Think multiple testing, both two 
groups of jury will share the same multiple testing dividend and the 
judge can still make a balanced call



Bayesian Two Sample Hypothesis 

Testing

1. H0 and H1, with prior odds

𝑃𝑟𝑖𝑜𝑟𝑂𝑑𝑑𝑠 =
𝑃 𝐻1

𝑃 𝐻0

2. Given observations, likelihood ratio(Bayes Factor)

𝐿𝑅 =
𝑃 𝐷𝑎𝑡𝑎 𝐻1

𝑃 𝐷𝑎𝑡𝑎 𝐻0

3. Bayes Rule
𝑃 𝐻1 𝐷𝑎𝑡𝑎

𝑃 𝐻0 𝐷𝑎𝑡𝑎
= 𝑃𝑟𝑖𝑜𝑟𝑂𝑑𝑑𝑠 × 𝐿𝑅 =

𝑃 𝐻1

𝑃 𝐻0
×
𝑃 𝐷𝑎𝑡𝑎 𝐻1

𝑃 𝐷𝑎𝑡𝑎 𝐻0



Bayesian Advantages

 Multiple testing

 Optional stopping/early stopping

 Smoothing /Regularization

 Useful Prior information

 Twyman’s law “Any piece of data or evidence that looks interesting or 
unusual is probably wrong!”

 More intuitive result

 P-value often misunderstood

 Business executives and engineers naturally understand P(H1|Data)

 Accepting the Null

 Meta Analysis: combine results from different studies



Why Not Everyone Is a Bayesian?

 Prior is often subjective, Conjugate prior often used for closed 

formula

 So called “non-informative” priors are never truly informative

 Lindley’s Paradox: uniform prior carries a lot of information

 Many above Bayesian Advantages only applies when we know the 

true prior(genuine prior)



Common Ground: the Twin 

Problem
 A pregnant physicist knows she is having twin boys

 Identical twin or fraternal twin?

 Dr. says based on birth data, 1/3 twins

are identical and 2/3 are fraternal

Bayes Rule:

PriorOdds: P(Identical)/P(Fraternal) = ½

LikelihoodRatio:

P(Data|Identical)/P(Data|Fraternal) = 

1/(1/2) = 2

Posterior Odds:

PriorOdds * LikelihoodRatio = 1

=> P(Identical|Data) = P(Fraternal|Data) = 1/2



Compare to Hypothesis Testing

 Similarities

 Both are testing two hypotheses

 Both have some data observed

 Dissimilarities

 Twins: the variable of interest can be observed

 Testing: we never observe the variable of interest (Null or Alternative) 

 we only observe metric movements, a noisy version of it

 The Dr’s input is critical in twin’s problem, it provides an objective 

prior assessment

 Do we have similar input in AB Testing?



Learning Prior Objectively

How does the doctor know the prior?

 Historical Birth Data!

 Estimate the prior using frequentist methods, e.g. MLE, confidence 
interval, etc.

If we have historical experiments with oracle label, i.e. Null or 
Alternative, we can easily do the same thing to know prior P(Null) and 
P(Alternative)

Reality: we don’t have label, and also we don’t know the distribution 
of treatment effect



Notation

 𝑡𝑠𝑡𝑎𝑡 =
Δ

𝜎𝑡
2

𝑁𝑇
+
𝜎𝑐
2

𝑁𝐶

,    NEff (effective sample size): 
1

1

𝑁𝑇
+

1

𝑁𝐶

 Sigma (Pooled SD): 
𝜎𝑡
2

𝑁𝑇
+

𝜎𝑐
2

𝑁𝐶
/ 𝑁𝐸𝑓𝑓 ,   𝛿 (Effect Size) : 

Δ

𝑆𝑖𝑔𝑚𝑎

 tstat = 𝜹/
𝟏

𝑵𝑬𝒇𝒇
turn two sample into one sample problem

 E(𝛿) = 𝜇 (treatment effect scaled by Sigma)

Make more sense to put prior on effect size since it is scale-invariant



Two Group Model

 Prior: Any Feature has

 P(H1) = p to have an effect

 P(H0) = 1-p to be flat

 Under H0, 𝜇 = 0

 Under H1, 𝜇 ∼ 𝑁(0, 𝑉2) (normal for practical simplicity, could be any 
distribution)

 We observe: 𝛿 =
Δ

Sigma
~𝑁(𝜇,

1

𝑁𝐸𝑓𝑓
) (given 𝜇)

 Things to inference:

 Based on observation 𝛿, what is P 𝐻1 𝐷𝑎𝑡𝑎 and P 𝐻0 𝐷𝑎𝑡𝑎

 What is the distribution of 𝜇 given the observation?



Model Fit

Given a set of historical experiment data

1. If we know the label(H0 or H1), we can estimate p and V

2. If we know p and V, we can estimate P(H1|Data) and P(H0|Data) 

for each historical experiment

3. P(H1|Data) and P(H0|Data) are like Soft-Label/Fuzzy-Label in step 

1. We can iterate between 1 and 2 until convergence!

 This is classic Expectation-Maximization!

 Converge to MLE of p and V

 Called MLE-II(MLE of hyper-parameter) or Empirical Bayes



Soft K-means(Bishop)



Does it work?

1. If I randomly simulate data from H0, can this algorithm converges 
to P(H0) = 100%? 

2. If I randomly simulate x% from H0 and 1-x% from H1 with a given V, 
can this algorithm converge to P(H1)=x% and V = V?

 Answer in general is yes if we have more than 1000 historical data 
points. Estimation is also reasonable for more than 200 historical data 
points

 This is properties of MLE, as this algorithm estimates MLE and MLE is 
consistent

 For 1, we need to bound V away from 0. otherwise H1 = H0 and there is 
no way to separate these two



Simulation Results

 Common set up: NEff (effective sample size) = 1E6 

 P(H0) = 100%

 N here is the number of historical data points

 P(H0) and P(H1) mixed

 Varying V, the larger the V, the easier the problem

 We vary V by changing k where V = k*1/sqrt(NEff), see later for intuition 



Bing Results/Presentation

Metric P(H0) P(H1)

X1 97.63% 2.37%

X2 99.80% 0.20%

X3 90.60% 9.40%

X4 98.77% 1.23%

X5 78.55% 21.45%

X6 97.41% 2.59%

X7 97.75% 2.25%

X8 35.50% 64.50%

X9 85.73% 14.27%

X10 98.35% 1.65%

X11 89.25% 10.75%

X12 81.02% 18.98%

X13 73.79% 26.21%

X14 65.57% 34.43%

X15 71.18% 28.82%

X16 66.74% 33.26%

X17 68.12% 31.88%

• User Engagement Metrics harder to move, e.g. active 

days per user, visits per user

• Revenue easier to move than engagement

• Signals on a module or part of page much easier to 

move than whole page

• Capping metrics for highly skewed distribution 

increased sensitivity (KDD 2013, Online Controlled 

Experiments at Large Scale)

• Variance Reduction method helps (CUPED, WSDM 

2013)

• Different devices, product areas have different priors

Device Metric PFlat

Mobile X 66.07%

Desktop X 81.02%

Mobile X(Capped) 61.85%

Desktop X(Capped) 75.19%



FAQ
How to pick a historical experiment corpus?

 Ideally, you want a corpus that represents the type of experiment you 
are running

 This is like matching in observational data causal inference. Practically, 
we can just use product area and type of treatments, e.g. UX change, 
Algo change or Perf change

Why should I believe my experiment now is “like” those 
from a year ago?

 Even for the same product area, your success rate might change. So 
some kind of time-dependent weighting might be needed in areas 
where a lot of changes are going on. 

Any other distributions for effect size beyond normal?

 Maybe the real distribution has heavier tail. In theory you can use any 
parametric model and learn parameters. But more parameters mean 
you need more historical data to get a good estimation. 



FAQ

What if my historical data is limited

 Classic cold start problem. One solution is to use full Bayesian, put a 

prior on prior. EM -> Variational Bayes

 Intuitively this is like start with “population mean” and gradually 

converge to the true “subgroup mean”



Conclusion

 Bayesian framework provides a unified framework that solves many 

pathologies of Frequentist NHST

 Multiple Testing, optional stopping

 Choice of prior is critical

 For online A/B Testing at scale, we are in a unique position where we 

can unify Bayesian and Frequentist method by learning prior 

objectively using historical data



Question?

 Full paper available at alexdeng.github.io

alexdeng.github.io


Appendix



Learn p and V from historical data

 For each metric, put historical data together into a dataset, compute 
𝑁𝐸𝑓𝑓, 𝛿 from Δ,𝑁𝑇 , 𝑁𝐶 𝑎𝑛𝑑 𝑡𝑠𝑡𝑎𝑡

 Initial guess: p=0.5, V = 1

 For each data point

1. Calculate P(data_i|H1) and P(data_i|H0) using V

2. Calculate P(H1|data_i) using Bayes Rule and p

3. P<- average P(H1|data_i) from 2

4. Estimate V using weight P(data_i|H1)

1. 𝑉𝑎𝑟 𝛿|𝐻1 = 𝐸
1

𝑁𝐸𝑓𝑓
|𝐻1 + 𝑉2

2. 𝑉𝑎𝑟(𝛿|𝐻1) 𝑎𝑛𝑑 𝐸
1

𝑁𝐸𝑓𝑓
|𝐻1 estimated from data with weight

 Iterate until converge


