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ABSTRACT
During the last decade, the information technology industry has

adopted a data-driven culture, relying on online metrics to measure

and monitor business performance. Under the setting of big data,

the majority of such metrics approximately follow normal distribu-

tions, opening up potential opportunities to model them directly

without extra model assumptions and solve big data problems via

closed-form formulas using distributed algorithms at a fraction

of the cost of simulation-based procedures like bootstrap. How-

ever, certain attributes of the metrics, such as their corresponding

data generating processes and aggregation levels, pose numerous

challenges for constructing trustworthy estimation and inference

procedures. Motivated by four real-life examples in metric devel-

opment and analytics for large-scale A/B testing, we provide a

practical guide to applying the Delta method, one of the most im-

portant tools from the classic statistics literature, to address the

aforementioned challenges. We emphasize the central role of the

Delta method in metric analytics by highlighting both its classic

and novel applications.
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1 INTRODUCTION
1.1 Background
The era of big data brings both blessings and curses [21]. On one

hand, it allows us to measure more accurately and efficiently, to

study smaller and more subtle effects, and to tackle problems with

smaller signal-to-noise-ratio. On the other hand, it demands larger
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storage and more intensive computations, forcing the data science

community to strive for efficient algorithms which can run in paral-

lel in a distributed system. Many existing algorithms and methods

(e.g., support vector machines) that are known to work well in small

data scenarios do not scale well in a big data setting [12, 25, 47].

Recently, there has been an increasing amount of research interest

in meta-algorithms, which can extend algorithms that are difficult

to parallelize into distributed algorithms [6, 52], and ideas that

resemble the divide-and-conquer algorithm [31, 34].

At the same time, there is a class of algorithms which are trivially

parallelizable and therefore can downsize big data problems into

smaller ones. The key idea behind them, which dates back to Fisher

[24], is to summarize the original data set by a low-dimensional

vector of summary statistics, which can often be computed in a

parallel and distributed way. For example, to estimate the mean

and variance of a normal distribution from independent and identi-

cally distributed (i.i.d.) observations, we only need to obtain their

sum and sum of squares, which are the corresponding summary

statistics
1
and can be trivially computed in a distributed fashion.

In data-driven businesses such as information technology, these

summary statistics are often referred to as metrics, and used for

measuring and monitoring key performance indicators [15, 18].

In practice, it is often the changes or differences between metrics,

rather than measurements at the most granular level, that are of

greater interest. In the context of randomized controlled experi-

mentation (or A/B testing), inferring the changes of metrics can

establish causality [36, 44, 50], e.g., whether a new user interface

design causes longer view times and more clicks.

1.2 Central limit theorem and Delta method
We advocate directly modeling the metrics rather than the original

data-set. When analyzing data at the most granular level (e.g., user),

we need some basic assumptions of the underlying probabilistic

model, such as i.i.d. observations. When looking at the metrics level,

we also need to know their joint distribution. This is where the

blessing of big data comes into play. Given large sample sizes, the

metrics often possess desirable asymptotic properties due to the

central limit theorem [45]. To ensure that the paper is self-contained,

we first review the central limit theorem in its most well-known

form. Let X1, . . . ,Xn be n i.i.d. observations with finite mean µ and

variance σ 2 > 0.We let X̄ denote the sample average, then as the

sample size n → ∞, in distribution

√
n(X̄ − µ)/σ → N (0, 1).

1
In fact, they are sufficient statistics [10], i.e., they can represent the original data-set

perfectly without losing any information.

Applied Data Science Track Paper KDD 2018, August 19-23, 2018, London, United Kingdom

233

https://doi.org/10.1145/3219819.3219919
https://doi.org/10.1145/3219819.3219919


A common application of the central limit theorem is to construct

the 100(1 − α)% confidence interval of µ as X̄ ± zα/2
σ/

√
n, where

zα/2
is the (α/2)th quantile for N (0, 1). This is arguably one of the

most influential results of asymptotic statistics used in almost all

scientific fields whenever an estimate with error bars is presented.

While an influential result, the central limit theorem in its basic

form only applies to the average of i.i.d. random variables, and in

practice our metrics are often more complex. To enjoy the bless-

ing of big data, we employ the Delta method, which extends the

normal approximations from the central limit theorem broadly. For

illustration we only review the uni-variate case. For any random

variable Tn (the subscript indicates its dependency on n, e.g., sam-

ple average) and constant θ such that

√
n(Tn − θ ) → N (0, 1) in

distribution as n → ∞, the Delta method allows us to extend its

asymptotic normality to any continuous transformation ϕ(Tn ). To
be more specific, by using the fact that Tn − θ = O(1/

√
n) and the

first order Taylor expansion [43]

ϕ(Tn ) − ϕ(θ ) = ϕ ′(θ )(Tn − θ ) +O{(Tn − θ )2}, (1)

we have in distribution

√
n {ϕ(Tn ) − ϕ(θ )} → N

{
0,ϕ ′(θ )2

}
.

This is the Delta method.Without relying on any assumptions other

than “big data,” the Delta method is general. It is also memorable –
anyone with basic knowledge of calculus can derive it. Moreover,

the calculation is trivially parallelizable and can be easily imple-

mented in a distributed system. Nevertheless, although conceptually

and theoretically straightforward, the practical difficulty is to find

the right “link” function ϕ that transforms the simple average to our

desired metric. Because of different attributes of the metrics, such

as the underlying data generating process and aggregation levels,

the process of discovering the corresponding transformation can be

challenging. However, unfortunately, although various applications

of the Delta method have previously appeared in the data mining

literature [16, 36, 39, 44], the method itself and the discovery of ϕ
were often deemed technical details and only briefly mentioned or

relegated to appendices. Motivated by this gap, we aim to provide a

practical guide that highlights the effectiveness and importance of

the Delta method, hoping to help fellow data scientists, developers

and applied researchers conduct trustworthy metric analytics.

1.3 Scope and contributions
As a practical guide, this paper presents four applications of the

Delta method in real-life scenarios, all of which have been deployed

in Microsoft’s online A/B testing platform ExP [35, 36] and em-

ployed to analyze experimental results on a daily basis:

• In Section 2, we derive the asymptotic distributions of ratio

metrics
2
. Compared with standard approaches by Fieller

[22, 23], the Delta method provides a much simpler and yet

almost equally accurate and effective solution;

• In Section 3, we analyze cluster randomized experiments,

where the Delta method offers an efficient alternative algo-

rithm to standard statistical machinery known as the mixed

effect model [4, 26], and provides unbiased estimates;

2
Pedantically, ratio of two measurements of the same metric, from the treatment and

control groups.

• In Section 4, by extending the Delta method to outer con-

fidence intervals [42], we propose a novel hybrid method

to construct confidence intervals for quantile metrics with

almost no extra computational cost
3
. Unlike most existing

methods, our proposal does not require repeated simulations

as in bootstrap, nor does it require estimating an unknown

density function, which itself is often a theoretically chal-

lenging and computationally intensive task, and has been a

center of criticism [7];

• In Section 5, we handle missing data in within-subject stud-

ies by combining the Delta method with data augmentation.

We demonstrate the effectiveness of “big data small problem”

approach when directly modeling metrics. Comparing to al-

ternative methods that need to put up a model for individual

subjects, our method requires less model assumptions.

The main purpose of this paper is to promote the Delta method

as a general, memorable and efficient tool for metric analytics. In

particular, our contributions to the existing data mining literature

include:

• Practical guidance for scenarios such as inferring ratio met-

rics, where the Delta method offers scalable and easier-to-

implement solutions;

• A novel and computationally efficient solution to estimate

the sampling variance of quantile metrics;

• A novel data augmentation technique that employs the Delta

method to model metrics resulting from within-subject or

longitudinal studies with unspecified missing data patterns.

For reproducibility and knowledge transfer, we provide all relevant

computer programs at https://aka.ms/exp/deltamethod.

2 INFERRING PERCENT CHANGES
2.1 Percent change and Fieller interval
Measuring change is a common theme in applied data science. In

online A/B testing [15, 17, 36, 37, 44], we estimate the average treat-

ment effect (ATE) by the difference of the same metric measured

from treatment and control groups, respectively. In time series anal-

yses and longitudinal studies, we often track a metric over time

and monitor changes between different time points. For illustration,

let X1, . . . ,Xn be i.i.d. observations from the control group with

mean µx and variance σ 2

x , Y1, . . . ,Yn i.i.d. observations from the

treatment group with mean µy and variance σ 2

y , and σxy the covari-

ance
4
betweenXi ’s andYj ’s. Let X̄ =

∑n
i=1

Xi/n and Ȳ =
∑n
i=1

Yi/n
be two measurements of the same metric from the treatment and

control groups, respectively, and their difference ∆̂ = Ȳ − X̄ is

an unbiased estimate of the ATE ∆ = µy − µx . Because both X̄

and Ȳ are approximately normally distributed, their difference ∆̂
also follows an approximate normal distribution with mean ∆ and

variance

Var(∆̂) = (σ 2

y + σ
2

x − 2σxy )/n.

3
Our procedure computes two more quantiles for confidence interval. Since the main

cost of quantile computing is sorting the data, computing three and one quantiles cost

almost the same.

4
For A/B testing where the treatment and control groups are independently sampled

from a super population, σxy = 0.
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Consequently, the well-known 100(1-α )% confidence interval of

∆ is ∆̂ ± zα × V̂ar(∆̂), where V̂ar(∆̂) is the finite-sample analogue

of Var(∆̂), and can be computed using the sample variances and

covariance of the treatment and control observations, denoted as

s2

y , s
2

x and sxy respectively.

In practice, however, absolute differences as defined above are

often hard to interpret because they are not scale-invariant. Instead,

we focus on the relative difference or percent change ∆% = (µy −

µx )/µx , estimated by ∆̂% = (Ȳ − X̄ )/X̄ . The key problem of this

section is constructing a 100(1-α )% confidence interval for ∆̂%. For

this classic problem, Fieller [22, 23] seems to be the first to provide a

solution. To be specific, let tr (α) denote the (1−α)th quantile for the
t−distribution with degree of freedom r , and д = ns2

x t
2

α/2
(r )/X̄ 2,

then Fieller’s interval of ∆% is

1

1 − д

{
Ȳ

X̄
− 1 −

дsxy

s2

x

±
tα/2

(r )
√
nX̄

√√√
s2

y − 2

Ȳ

X̄
sxy +

Ȳ 2

X̄ 2
s2

x − д

(
s2

y −
s2

xy

s2

x

)} (2)

Althoughwidely considered as the standard approach for estimating

variances of percent changes [38], deriving (2) is cumbersome (see

[46] for a modern revisit). The greater problem is that, even when

given this formula, applying it often requires quite some effort.

According to (2) we need to not only estimate the sample variances

and covariance, but also the parameter д.

2.2 Delta method and Edgeworth correction
The Delta method provides a more intuitive alternative solution.

Although they can be found in classic textbooks such as [10], this

paper (as a practical guide) still provides all the relevant technical

details. We letTn = (Ȳ , X̄ ), θ = (µy , µx ) and ϕ(x ,y) = y/x . A multi-

variate analogue of (1) suggests that ϕ(Tn )−ϕ(θ ) ≈ ∇ϕ(θ ) · (Tn −θ ),
which implies that

Y

X
−

µy

µx
≈

1

µx
(Ȳ − µy ) −

µy

µ2

x
(X̄ − µx ) (3)

For i = 1, . . . ,n, letWi = Yi/µx − µyXi/µ
2

x , which are also i.i.d.

observations. Consequently, we can re-write (3) as Ȳ/X̄ − µy/µx ≈∑n
i=1

Wi/n, leading to the Delta method based confidence interval

Ȳ

X̄
− 1︸︷︷︸

point estimate

±
zα/2

√
nX̄

√
s2

y − 2

Ȳ

X̄
sxy +

Ȳ 2

X̄ 2
s2

x︸                               ︷︷                               ︸
uncertainty quantification

(4)

(4) is easier to implement than (2), and is in fact the limit of (2)

in the large sample case, because as n → ∞, we have tα/2
(r ) →

zα/2
, д → 0, and Var(X̄ ) ∼ O(1/n). Although Fieller’s confidence

interval can be more accurate for small samples [30], this benefit

appears rather limited for big data. Moreover, the Delta method

can also be easily extended for a better approximation by using

Edgeworth expansion [5, 29]. To be more specific, (3) suggests that

in distribution

√
n

(
Ȳ/X̄ − µy/µx

)
/σw → ν , whose cumulative

distribution function

F (t) = Φ(t) − 6n−1/2κw (t2 − 1)ϕ(t)

contains a correction term in addition to Φ(t), the cumulative dis-

tribution function of the standard normal, and κw , the skewness of

theWi ’s. By simply replacing the terms “±zα/2
” in (4) with να/2

and

ν
1−α/2

, the (α/2)th and (1 − α/2)th quantiles of ν , respectively, we
obtain the corresponding Edgeworth expansion based confidence

interval. Finally, we can add a second-order bias correction term

(Ȳs2

x /X̄ − sxy )/(nX̄ )2 to the point estimate in (4); the same correct

term can be applied to the Edgeworth expansion based interval.

2.3 Numerical examples
To illustrate the performance of Fieller’s interval in (2), the Delta

method interval in (4), and the Edgeworth interval with and without

bias correction under different scenarios, we let the sample size

n = 20, 50, 200, 2000. For each fixed n,we assume that the treatment

and control groups are independent, and consider three simulation

models for i.i.d. experimental units i = 1, . . . ,n :

(1) Normal: Xi ∼ N (µ = 1,σ = 0.1), Yi ∼ N (µ = 1.1,σ = 0.1);

(2) Poisson: Xi ∼ Pois(λ = 1), Yi ∼ Pois(λ = 1.1);

(3) Bernoulli: Xi ∼ Bern(p = 0.5), Yi ∼ Bern(p = 0.6).

The above models aim to mimic the behaviors of our most common

metrics, discrete or continuous. For each case, we repeatedly sample

M = 10, 000 data sets, and for each data set we construct Fieller’s

and the Delta method intervals, respectively, and then add correc-

tion to the Delta method result. We also construct the Edgeworth

expansion interval without and with the bias correction.

Table 1: Simulated examples: The first two columns contain simulation mod-
els and sample sizes. The next five columns present the coverage rates of various
95% confidence intervals – Fieller’s, Delta method based (w/o and w/ bias correc-
tion) and Edgeworth expansion based (w/o and w/ bias correction).

Method n Fieller Delta Delta(BC) Edgeworth Edgeworth(BC)

Normal 20 0.9563 0.9421 0.9422 0.9426 0.9426

Normal 50 0.9529 0.9477 0.9477 0.9478 0.9477

Normal 200 0.9505 0.9490 0.9491 0.9490 0.9490

Normal 2000 0.9504 0.9503 0.9503 0.9503 0.9503

Poisson 20 0.9400 0.9322 0.9370 0.9341 0.9396

Poisson 50 0.9481 0.9448 0.9464 0.9464 0.9478

Poisson 200 0.9500 0.9491 0.9493 0.9496 0.9498

Poisson 2000 0.9494 0.9494 0.9495 0.9494 0.9495

Bernoulli 20 0.9539 0.9403 0.9490 0.9476 0.9521

Bernoulli 50 0.9547 0.9507 0.9484 0.9513 0.9539

Bernoulli 200 0.9525 0.9513 0.9509 0.9517 0.9513

Bernoulli 2000 0.9502 0.9500 0.9499 0.9501 0.9500

We report the corresponding coverage rates in Table 1, from

which we can draw several conclusions. For big data (n ≥ 200),

all methods achieve nominal (i.e., ≈ 95%) coverage rates for all

simulation models. For small data (n ≤ 50), although Fieller’s in-

terval seems more accurate for some simulation models (e.g., nor-

mal), other methods perform comparably, especially after the bias

correction. For simplicity in implementation and transparency in

applications, we recommend Algorithm 1, which uses the Delta

method based interval (4) with the bias correction.

3 DECODING CLUSTER RANDOMIZATION
3.1 The variance estimation problem
Two key concepts in a typical A/B test are the randomization unit
– the granularity level where sampling or randomization is per-

formed, and the analysis unit – the aggregation level of metric
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Algorithm 1 Confidence interval for ratio: Delta method + bias correction

1: function deltaci(X = X1, . . . , Xn ;Y1, . . . , Yn ; α = 0.05)

2: X̄ = mean(X ); Ȳ = mean(Y );
3: s2

x = var(X ); s2

y = var(Y ); sxy = cov(X , Y );
4: bc = Ȳ /X̄ 3 × s2

x /n − 1/X̄ 2 × sxy/n ▷ bias correction term

5: pest = Ȳ /X̄ − 1 + bc ▷ point estimate

6: vest = s2

y/X̄
2 − 2 × Ȳ /X̄ 3 ∗ sxt + Ȳ 2/X̄ 4 ∗ s2

x

7: return: pest ± z
1−α /2

×
√
vest/n ▷ 100(1 − α ) confidence interval

computation. Analysis is straightforward when the randomiza-

tion and analysis units agree [14], e.g., when randomizing by user

while also computing the average revenue per user. However, often

the randomization unit is a cluster of analysis units (it cannot be
more granular than the analysis unit, otherwise the analysis unit

would contain observations under both treatment and control, nul-

lifying the purpose of differentiating the two groups). Such cases,

sometimes referred to as cluster randomized experiments in the

econometrics and statistics literature [1, 33], are quite common in

practice, e.g., enterprise policy prohibiting users within the same

organization from different experiences, or the need to reduce bias

in the presence of network interference [2, 20, 27]. Perhaps more

ubiquitously, for the same experiment we usually have metrics

with different analysis units. For example, to meet different busi-

ness needs, most user-randomized experiments run by ExP contain

both user-level and page-level metrics.

We consider two average metrics
5
of the treatment and con-

trol groups, assumed to be independent. Without loss of gener-

ality, we only focus on the treatment group with K clusters. For

i = 1, . . . ,K , the ith cluster contains Ni analysis unit level obser-

vations Yi j (j = 1, . . . ,Ni ). Then the corresponding average metric

is Ȳ =
∑
i, j Yi j

/ ∑
i Ni .We assume that within each cluster the ob-

servations Yi j ’s are i.i.d. with mean µi and variance σ 2

i , and across

clusters (µi ,σi ,Ni ) are also i.i.d.

3.2 Existing and Delta method based solutions
Ȳ is not an average of i.i.d. random variables, and the crux of our

analysis is to estimate its variance. Under strict assumptions, closed-

form solutions for this problem exist [19, 33]. For example, when

Ni =m and σ 2

i = σ 2
for all i,

Var(Ȳ ) =
σ 2 + τ 2

Km
{1 + (m − 1)ρ}, (5)

where τ 2 = Var(µi ) is the between-cluster variance and ρ = τ 2/(σ 2+

τ 2) is the coefficient of intra-cluster correlation, which quantifies the

contribution of between-cluster variance to the total variance. To

facilitate understanding of the variance formula (5), two extreme

cases are worth mentioning:

(1) If σ = 0, then for each i = 1, . . . ,K and all j = 1, . . . ,Ni ,

Yi j = µi . In this case, ρ = 1 and Var(Ȳ ) = τ 2/K ;

(2) If τ = 0, then µi = µ for all i = 1, . . . ,K , and therefore the

observations Yi j ’s are in fact i.i.d. In this case, ρ = 0 and (5)

reduces to Var(Ȳ ) = σ 2/(Km).

5
Pedantically, they are two measurements of the same metric. We often use metric to

refer to both the metric itself (e.g. revenue-per-user) and measurements of the metric

(e.g. revenue-per-user of the treatment group) and this distinction would be clear in

the context.

However, unfortunately, although theoretically sound, (5) has only

limited practical value because the assumptions it makes are unreal-

istic. In reality, the cluster sizes Ni and distributions of Yi j for each

cluster i are different, which means that µi and σ
2

i are different.

Another common approach is themixed effectmodel, also known

as multi-level/hierarchical regression [26], where Yi j depends on

µi and σ 2

i , while the parameters themselves follow a “higher or-

der” distribution. Under this setting, we can infer the treatment

effect as the “fixed” effect for the treatment indicator term
6
. Stan

[9] offers a Markov Chain Monte Carlo (MCMC) implementation

aiming to infer the posterior distribution of those parameters, but

this needs significant computational effort for big data. Moreover,

the estimated ATE, i.e., the coefficient for the treatment assign-

ment indicator, is for the randomization unit (i.e., cluster) but not

the analysis unit level, because it treats all clusters with equal

weights and can be viewed as the effect on the double average∑
i (
∑
j Yi j/Nj )/K , which is usually different than the population

average Ȳ [15]. This distinction doesn’t make a systematic differ-

ence when effects across clusters are homogeneous. However, in

practice the treatment effects are often heterogeneous, and using

mixed effect model estimates without further adjustment steps

could lead to severe biases.

On the contrary, the Delta method solves the problem directly

from the metric definition. Re-write Ȳ into

∑
i (
∑
j Yi j )/

∑
i Ni . Let

Si =
∑
j Yi j , and divide both the numerator and denominator by K ,

Ȳ =

∑
i Si/K∑
i Ni/K

= S̄/N̄ .

Albeit not an average of i.i.d. random variables, Ȳ is a ratio of two

averages of i.i.d. randomization unit level quantities [14]. Therefore,

by following (3) in Section 2.2,

Var(Ȳ ) ≈
1

Kµ2

N

(
σ 2

S − 2

µS
µN

σSN +
µ2

S

µ2

N
σ 2

N

)
. (6)

Therefore, the variance of Ȳ depends on the variance of a centered

version of Si (by a multiple of Ni , not the constant E(Si ) as typically
done). Intuitively, both the variance of the cluster size Ni , and of the

within-cluster sum of observations Si =
∑
j Yi j , contribute to (6). In

particular, σ 2

N = VarNi is an important contributor of the variance

of Ȳ , leading to a practical recommendation for the experimenters

– it is desirable to make the cluster sizes homogeneous; otherwise it

can be difficult to detect small treatment effects due to low statistical

power.

3.3 Numerical examples
Because the coverage property of (6) has been extensively covered

in Section 2.3, we only focus on comparing it with the mixed effect

model here. We first describe the data generating process, which

consists of a two-level hierarchy as described in the previous section.

First, at the randomization unit level, let the total number of clusters

K = 1000. To mimic cluster heterogeneity, we divide clusters into

three categories: small, medium and large.We generate the numbers

of clusters in the three categories by the following multinomial

6
Y ∼ Treatment + (1|User) in lme4 notation. A detailed discussion is beyond the scope

of this paper; see Bates et al. [3], Gelman and Hill [26].
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distribution:

(M1,M2,M3)
′ ∼ Multi-nomial{n = K ;p = (1/3, 1/2, 1/6)}.

For the ith cluster, depending on which category it belongs to, we

generate Ni , µi and σi in the following way
7
:

• Small: Ni ∼ Poisson(2), µi ∼ N (µ = 0.3,σi = 0.05);

• Medium: Ni ∼ Poisson(5), µi ∼ N (µ = 0.5,σi = 0.1);

• High: Ni ∼ Poisson(30), µi ∼ N (µ = 0.8,σi = 0.05);

Second, for each fixed i, let Yi j ∼ Bernoulli(p = µi ) for all j =
1, . . . ,Ni . This choice is motivated by binary metrics such as page-

click-rate, and because of it we can determine the ground truth

E(Ȳ ) = 0.667 by computing the weighted average of µi weighted
by the cluster sizes and the mixture of small, medium and large

clusters.

Our goal is to infer E(Ȳ ) and we compare the following three

methods:

(1) A naive estimator Ȳ , pretending all observations Yi j are i.i.d;
(2) Fitting a mixed effect model with a cluster random effect µi ;
(3) Using the metric Ȳ as in the first method, but using the Delta

method for variance estimation.

Based on the aforementioned data generating mechanism, we re-

peatedly and independently generate 1000 data sets. For each data

set, we compute the point and variance estimates of E(Ȳ ) using the
naive, mixed effect, and delta methods. We then compute empirical

variances for the three estimators, and compare them to the average

of estimated variances. We report the results in Table 2.

Table 2: Simulated examples: The first three columns contain the chosen
method, the true value of E(Ȳ ) and the true standard deviation of the corre-
sponding methods. The last two columns contain the point estimates and aver-
age estimated standard errors.

Method Ground Truth SD(True) Estimate Avg. SE(Model)

Naive 0.667 0.00895 0.667 0.00522

Mixed effect 0.667 0.00977 0.547 0.00956

Delta method 0.667 0.00895 0.667 0.00908

Not surprisingly, the naive method under-estimates the true

variance – we had treated the correlated observations as indepen-

dent. Both the Delta method and the mixed effect model produced

satisfactory variance estimates. However, although both the naive

and the Delta method correctly estimated E(Y ), the mixed effect

estimator is severely biased. This shouldn’t be a big surprise if we

look deeper into the model Yi j = α + βi + ϵi j and E(ϵi j ) = 0, where

the random effects βi are centered so E(βi ) = 0. The sum of the

intercept terms α and βi stands for the per-cluster mean µi , and α
represents the average of per-cluster mean, where we compute the

mean within each cluster first, and then average over clusters. This

is different from the metrics defined as simple average of Yi j in the

way that in the former all clusters are equally weighted and in the

latter case bigger clusters have more weight. The two definitions

will be the same if and only if either there is no heterogeneity, i.e.

per-cluster means µi are all the same, or all clusters have the same

size. We can still use the mixed effect model to get a unbiased esti-

mate. This requires us to first estimate every βi (thus µi ), and then

compute (α + βi )Ni/
∑
i Ni by applying the correct weight Ni . The

mixed effect model with the above formula gave a new estimate

7
The positive correlation between µi and Ni is not important, and reader can try out

code with different configuration.

0.662, much closer to the ground truth. Unfortunately, it is still hard

to get the variance of this new estimator.

In this study we didn’t consider the treatment effect. In ATE

estimation, the mixed effect model will similarly result in a biased

estimate for the ATE for the same reason, as long as per-cluster

treatment effects vary and cluster sizes are different. The fact that

the mixed effect model provides a double average type estimate and

the Delta method estimates the “population” mean is analogous to

the comparison of the mixed effect model with GEE (generalized

estimating equations) [41]. In fact, in the Gaussian case, the Delta

method can be seen as the ultimate simplification of GEE’s sandwich

variance estimator after summarizing data points into sufficient

statistics. But the derivation of GEE is much more involved than

the central limit theorem, while we can explain the Delta method

in a few lines and it is not only more memorable but also provides

more insights in (6).

4 EFFICIENT VARIANCE ESTIMATION FOR
QUANTILE METRICS

4.1 Sample quantiles and their asymptotics
Although the vast majority of metrics are averages of user telemetry

data, quantile metrics form another category that is widely used

to focus on the tails of distributions. In particular, this is often the

case for performance measurements, where we not only care about

an average user’s experience, but even more so about those that

suffer from the slowest responses. Within the web performance

community, quantiles (of, for example, page loading time) at 75%,

95% or 99% often take the spotlight. In addition, the 50% quantile

(median) is sometimes used to replace the mean, because it is more

robust to outlier observations (e.g., errors in instrumentation). This

section focuses on estimating the variances of quantile estimates.

Suppose we have n i.i.d. observations X1, . . . ,Xn , generated by

a cumulative distribution function F (x) = P(X ≤ x) and a density

function f (x)8. The theoretical pth quantile for the distribution F
is defined as F−1(p). Let X(1), . . . ,X(n) be the ascending ordering
of the original observations. The sample quantile at p is X(np) if

np is an integer. Otherwise, let ⌊np⌋ be the floor of np, then the

sample quantile can be defined as any number betweenX( ⌊np ⌋) and

X( ⌊np ⌋+1) or a linear interpolation of the two
9
. For simplicity here

we use X( ⌊np ⌋), which will not affect any asymptotic results. It is a

well-known fact that, ifX1, . . . ,Xn are i.i.d. observations, following

the central limit theorem and a rather straightforward application

of the Delta method, the sample quantile is approximately normal

[10, 45]:

√
n

{
X ⌊np ⌋ − F−1(p)

}
→ N

[
0,

σ 2

f
{
F−1(p)

}
2

]
, (7)

where σ 2 = p(1 − p). However, unfortunately, in practice we rarely

have i.i.d. observations. A common scenario is in search engine

performance telemetry, where we receive an observation (e.g., page

8
We do not consider cases when X has discrete mass, and F will have jumps. In this

case the quantile can take many values and is not well defined. In practice this case

can be seen as continuous case with some discrete correction.

9
When p is 0.5, the 50% quantile, or median, is often defined as the average of the

middle two numbers if we have even number of observations.
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loading time) for each server request or page-view, while random-

ization is done at a higher level such as device or user. This is the

same situation we have seen in Section 3, where Xi are clustered.
To simplify future notations, we letYi = I {Xi ≤ F−1(p)},where I is
the indicator function. Then (6) can be used to compute Var(Ȳ ), and
(7) holds in the clustered case with σ 2 = nVar(Ȳ ). This generalizes
the i.i.d. case where nVar(Ȳ ) = p(1−p). Note that the Delta method

is instrumental in proving (7) itself, but a rigorous proof involves a

rather technical last step that is beyond our scope. A formal proof

can be found in [45].

4.2 A Delta method solution to a practical issue
Although theoretically sound, the difficulty of applying (7) in prac-

tice lies in the denominator f {F−1(p)},whose computation requires

the unknown density function f at the unknown quantile F−1(p).
A common approach is to estimate f from the observed Xi using
non-parametric methods such as kernel density estimation [48].

However, any non-parametric density estimation method is trading

off between bias and variance. To reduce variance, more aggressive

smoothing and hence larger bias need to be introduced to the pro-

cedure. This issue is less critical for quantiles at the body of the

distribution, e.g. median, where density is high and more data exists

around the quantile to make the variance smaller. As we move to

the tail, e.g. 90%, 95% or 99%, however, the noise of the density

estimation gets bigger, so we have to introduce more smoothing

and more bias. Because the density shows up in the denominator

and density in the tail often decays to 0, a small bias in estimated

density can lead to a big bias for the estimated variance (Brown

and Wolfe [7] raised similar criticisms with their simulation study).

A second approach is to bootstrap, re-sampling the whole dataset

many times and computing quantiles repeatedly. Unlike an average,

computing quantiles requires sorting, and sorting in distributed

systems (data is distributed in the network) requires data shuffling

between nodes, which incurs costly network I/O. Thus, bootstrap

works well for small scale data but tends to be too expensive in

large scale in its original form (efficient bootstrap on massive data

is a research area of its own [34]).

An alternative method without the necessity for density estima-

tion is more desirable, especially from a more practical perspec-

tive. One such method is called outer confidence interval (outer

CI) [40, 42], which produces a closed-form formula for quantile

confidence intervals using combinatorial arguments. Recall that

Yi = I {Xi ≤ F−1(p)} and

∑
Yi is the count of observations no

greater than the quantile. In the aforementioned i.i.d. case,

∑
Yi

follows a binomial distribution. Consequently, when n is large
√
n(Ȳ − p) ≈ N (0,σ 2) where σ 2 = p(1 − p). If the quantile value

F−1(p) ∈ [X(r ),X(r+1)), then Ȳ = r/n. The above equation can be in-

verted into a 100(1−α)% confidence interval for r/n : p±zα/2
σ/

√
n.

This means with 95% probability the true percentile is between

the lower rank L = n(p − zα/2
σ/

√
n) and upper rank U = n(p +

zα/2
σ/

√
n) + 1!

The traditional outer CI depends on Xi being i.i.d. But when

there are clusters, σ 2/n instead of being p(1 − p)/n simply takes a

different formula (6) by the Delta method and the result above still

holds. Hence the confidence interval for a quantile can be computed

in the following steps:

(1) fetch the quantile X( ⌊np ⌋)
(2) compute Yi = I {Xi ≤ X( ⌊np ⌋)}

(3) compute µS , µN , σ 2

S , σSN , σ 2

N
(4) compute σ by setting σ 2/n equal to the result of equation (6)

(5) compute L,U = n(p ± zα/2
σ )

(6) fetch the two ranks X(L) and X(U )

We call this outer CI with pre-adjustment. This method reduces the

complexity of computing a quantile and its confidence interval into

a Delta method step and subsequently fetching three “ntiles”. How-

ever, in this algorithm the ranks depends on σ , whose computation

depends on the quantile estimates (more specifically the Yi requires
a pass through the data after quantile is estimated). This means

that this algorithm requires a first ‘ntile’ retrieval, and then a pass

through the data for σ computation, and then another two ‘ntile’

retrievals. Turns out, computing all three ‘ntiles’ in one stage is

much more efficient than splitting into two stages. This is because

retrieving ‘ntiles’ can be optimized in the following way: if we only

need to fetch tail ranks, it is pointless to sort data that are not at the

tail; we can use sketching algorithm to narrow down the possible

range where our ranks reside and only sort in that range, making it

even more efficient to retrieve multiple ‘ntiles’ at once. Along this

line of thoughts, to make the algorithm more efficient, we noticed

that (7) also implies that the change from Xi being i.i.d. to clustered
only requires an adjustment to the numerator σ , which is a simple

re-scaling step, and the correction factor does not depend on the

unknown density function f in the denominator. If the outer CI

were to provide a good confidence interval in i.i.d. case, a re-scaled

outer CI with the same correction term should also work for the

clustered case, at least when n is large. This leads to the outer CI

with post-adjustment algorithm:

(1) compute L,U = n(p ± zα/2

√
p(1 − p)/n)

(2) fetch X( ⌊np ⌋), X(L) and X(U )

(3) compute Yi = I {Xi ≤ X( ⌊np ⌋)}

(4) compute µS , µN , σ 2

S , σSN , σ 2

N
(5) compute σ by setting σ 2/n equal to the result of equation (6)

(6) compute the correction factor σ/
√
p(1 − p) and apply it to

X(L) and X(U )

We implemented this latter method in ExP using Apache Spark [51]

and SCOPE [11].

4.3 Numerical examples
To test the validity and performance of the adjusted outer CImethod,

we compare its coverage to a standard non-parametric bootstrap

(NB = 1000 replicates). The simulation setup consists of Nu =
100, . . . , 10000 users (clusters) with Nu

i = 1, . . . , 10 observations

each (Nu
i are uniformly distributed). Each observation is the sum of

two i.i.d. random variables Xu
i = Xi +Xu , where Xu is constant for

each user. We consider two cases, one symmetric and one heavy-

tailed distribution:

• Normal: Xi ,Xu
iid

∼ N(µ = 0,σ = 1);

• Log-Normal: Xi ,Xu
iid

∼ Log-normal(µ = 0,σ = 1).

First, we find the "true" 95th percentile value of these distribution

by computing its value for a very large sample (Nu = 10
7
). Second,

we compute the confidence intervals forM = 10000 simulation runs
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using bootstrap and outer CI with pre- and post-adjustment and

compare their coverage estimates (≈0.002 standard error), shown in

Table 3. We found that when the sample contains 1000 or more clus-

ters, all methods provide good coverage. Pre- and post-adjustment

outer CI results are both very close to the much more computation-

ally expensive bootstrap (in our un-optimized simulations, the outer

CI method was ≈20 times faster than bootstrap). When the sam-

ple size was smaller than 1000 clusters, bootstrap was noticeably

inferior to outer CI. For all sample sizes, pre-adjustment provided

slightly larger coverage than post-adjustment, and this difference in-

creased for smaller samples. In addition, because adjustment tends

to result in increased confidence intervals, unadjusted ranks are

more likely to have the same value as the quantile value, and thus

post-adjustment is more likely to underestimate the variance in that

case. In conclusion, post-adjustment outer CI works very well for

large sample sizes Nu ≥ 1000 and reasonably well for smaller sam-

ples, but has slightly inferior coverage compared to pre-adjustment.

For big data, outer CI with post-adjustment is recommended due

its efficiency, while for median to small sample sizes, outer CI with

pre-adjustment is preferred if accuracy is paramount.

Table 3: Simulated examples: The first two columns contain the simulated
models and sample sizes. The last three columns contain the coverage rates for
the Bootstrap, pre-adjusted and post-adjusted outer confidence intervals.

Distribution Nu Bootstrap Outer CI Outer CI

(pre-adj.) (post-adj.)

Normal 100 0.9039 0.9465 0.9369

Normal 1000 0.9500 0.9549 0.9506

Normal 10000 0.9500 0.9500 0.9482

Log-normal 100 0.8551 0.9198 0.9049

Log-normal 1000 0.9403 0.9474 0.9421

Log-normal 10000 0.9458 0.9482 0.9479

5 MISSING DATA ANDWITHIN-SUBJECT
ANALYSES

5.1 Background
Consider the case that we are tracking a metric over time. For

example, businesses need to track key performance indicators like

user engagement and revenue daily or weekly for a given audience.

To simplify, let us say we are tracking weekly visits-per-user. Visits-

per-user is defined as a simple average X̄t , t = 1, . . . for each week.

If there is a drop between X̄t and X̄t−1, how do we set up an alert

so that we can avoid triggering it due to random noise and control

the false alarm rate? Looking at the variance, we see

Var(X̄t − X̄t−1) = Var(X̄t ) + Var(X̄t−1) − 2Cov(X̄t , X̄t−1)

and we need to have a good estimate of the covariance term because

we know it is non-zero.

Normally, estimating the covariance of two sample averages is

trivial and the procedure is very similar to the estimation of the

sample variance. But there is something special about this case —

missing data. Not everyone uses the product every week. For any

online and offline metric, we are only able to define the metric using

observed data. If for every user we observe its value in week t − 1

and t , the covariance can be estimated using the sample covariance

formula. But if there are many users who appear in week t − 1

but not in t , it is unclear how to proceed. The naive approach is

to estimate the covariance using complete observations, i.e. users

who appear in both weeks. However, this only works if the data is

missing completely at random. In reality, active users will show up

more often and are more likely to appear in both weeks, meaning

the missing data are obviously not random.

In this section we show how the Delta method can be very useful

for estimating Cov(X̄t , X̄t ′) for any two time points t and t ′. We

then use this to show how we can analyze within-subject studies,

also known as pre-post, repeated measurement, or longitudinal

studies. Our method starts with metrics directly, highly contrast-

ing with traditional methods such as mixed effect models which

build models from individual user’s data. Because we study metrics

directly, our model is small and easy to solve with its complexity

constant to the scale of data.
10

5.2 Methodology
How do we estimate covariance with a completely unknown miss-

ing data mechanism? There are many existing works on handling

missing data. One approach is to model the propensity of a data-

point being missing using other observed predictors [13]. This re-

quires additional covariates/predictors to be observed, plus a rather

strong assumption that conditioned on these predictors, data are

missing completely at random. We present a novel idea using the

Delta method after data augmentation without the need of model-

ing the missing data mechanism. Specifically, we use an additional

indicator for the presence/absence status of a user in each period t .
For user i in period t , let Iit = 1 if user i appears in period t , and 0

otherwise. For each user i in period t , instead of one scalar metric

value (Xit ), we augment it to a vector (Iit ,Xit ). When Iit = 0, i.e.

user is missing, we define Xit = 0. Under this simple augmentation,

the metric value X̄t , taking the average over those non-missing

measurements in period t , is the same as

∑
i Xit /

∑
i Iit ! In this

connection,

Cov(X̄t , X̄t ′) = Cov

(∑
i Xit∑
i Iit
,

∑
i Xit ′∑
i Iit ′

)
= Cov

(
X̄t

Īt
,
X̄t ′

Īt ′

)
where the last equality is by dividing both numerator and denom-

inator by the same total number of users who have appeared in

any of the two periods.
11

Thanks to the central limit theorem, the

vector (Īt , X̄t , Īt ′ , X̄t ′) is also asymptotically (multivariate) normal

with covariance matrix Σ, which can be estimated using sample

variance and covariance because there is no missing data after aug-
mentation. In Section 2 we already applied the Delta method to

compute the variance of a ratio of metrics by taking the first order

Taylor expansion. Here, we can expand the two ratios to their first

order linear form (X̄t − µXt )/µIt − µXt (Īt − µIt )/µ
2

It
, where µX

and µI are the means of X and I and the expansion for t ′ is similar.

Cov(X̄t , X̄t ′) can then be computed using Σ.

10
Part of the work in this section has previously appeared in a technical report [28].

Since authoring the technical report, the authors developed a better understanding

of the differences between mixed effect models and the proposed method, and we

present our new findings here. The technical report has more details about other types

of repeated measurement models.

11
Actually, if there are more than two period, we can either use only users appeared in

any of the two periods, or users appeared in any of all the periods. It is mathematically

the same thing if we added more users and then treat them as not appeared in I and
X , i.e. X̄t remains the same.
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We can apply this to the general case of a within-subject study.

Without loss of any generality and with the benefit of a concrete

solution, we only discuss a cross-over design here. Other designs

including more periods are the same in principle. In a cross-over

design, we have two groups I and II. For group I, we assign them to

the treatment for the first period and control for the second. For

group II, the assignment order is reversed. We often pick the two

groups using random selection, so each period is an A/B test by

itself.

Let X̄it , i = 1, 2, t = 1, 2 be the metric for group i in period t . Let
X = (X̄11, X̄12, X̄21, X̄22). We know X ∼ N (µ, ΣX) for a mean vector

µ and covariance matrix ΣX. ΣX has the form diag(Σ, Σ) since the
two groups are independent with the same distribution. With the

help of the Delta method, we can estimate Σ from the data and treat

it as a constant covariance matrix (hence ΣX). Our model concerns

the mean vector µ(θ ) using other parameters which represent our

interest. In a cross-over design, θ = (θ1,θ2,∆) where the first two
are baseline means for the two periods and our main interest is

the treatment effect ∆. (We assume there is no treatment effect

for group I carried over to the 2nd period. To study carry over

effect, a more complicated design needs to be employed.) In this

parameterization,

µ(θ ) = (θ1 + ∆,θ2,θ1,θ2 + ∆) . (8)

The maximum likelihood estimator and Fisher information the-

ory [45] paved a general way for us to estimate θ as well as the

variance of the estimators for various mean vector models. For ex-

ample, if we want to model the relative change directly, we just need

to change the addition of ∆ into multiplication of (1 + ∆). Notice
the model we are fitting here is very small, almost a toy example

from a text book. All the heavy lifting is in computing ΣX which is

dealt with by the Delta method where all computations are trivially

distributed. When µ(θ ) = Mθ is linear as in the additive cross-over

model above,
ˆθ = (MT Σ−1

X M)−1MT Σ−1

X X and Var(̂θ ) = I−1
where

the Fisher Information I = MT Σ−1

X M .

5.3 Numerical examples
We simulate two groups with 1000 users each. The first group

receives treatment in period 1, then control in period 2, while the

second group receives the inverse. For each user, we impose an

independent user effect ui that follows a normal distribution with

mean 10 and standard deviation 3, and independent noises ϵit with
mean 0 and standard deviation 2. Each user’s base observations

(before treatment effect) for the two periods are (ui + ϵi1,ui + ϵi2).
We then model the missing data and treatment effect such that they

are correlated. We define a user’s engagement level li by its user

effect ui through P(U < ui ), i.e. the probability that a user’s u is

bigger than another random user. We model the treatment effect

∆i as an additive normal with mean 10 and standard deviation 0.3,

multiplied by li . For each user and each of the two periods, there

is a 1 - max(0.1, li ) probability of this user being missing. We can

interpret the missing data as a user not showing up, or as a failure

to observe. In this model, without missing data, every user has two

observations and the average treatment effect should be E(∆i ) = 5

because E(li ) = 0.5. Since we have missing data and it is more

likely for lower engagement levels to be missing, we expect the

average treatment effect for the population of all observed users

to be between 5 to 10. In the current model we didn’t add a time

period effect such that the second period could have a different

mean θ2 from the first period’s mean θ1, but in analysis we always

assume that this effect could exist.

We simulate the following 1000 times: each time we run both the

mixed effect model Xit ∼ IsTreatment + Time + (1|User) as well as

the additive cross-over model (8) and record their estimates of the

ATE and the corresponding estimated variance. We then estimate

the true estimator variance using the sample variance of those

estimates among 1000 trials and compare that to the mean of the

estimated variance to evaluate the quality of variance estimations.

We also compute the average of ATE estimates and compare to the

true ATE to assess the bias.

Table 4: Simulated examples: The first three columns contain the method,
true ATE and standard deviations of the corresponding methods. The last two
columns contain the point estimates and average estimated standard errors.

Ground Truth SD(True) Estimate Avg. SE(Model)

mixed effect 6.592 0.1295 7.129 0.1261

Delta method 6.592 0.1573 6.593 0.1568

Table 4 summarizes the results. We found both methods provide

good variance estimation and the mixed effect model shows smaller

variance. However, mixed effect also displays an upward bias in

the ATE estimate while the Delta method closely tracks the true

effect. To further understand the difference between the two, we

separate the data into two groups: users with complete data, and

users who only appear in one period (incomplete group). We run

the mixed effect model for the the two groups separately. Note that

in the second group each user only appears once in the data, so

the model is essentially a linear model. Our working hypothesis

is the following: because the mixed effect model assumes a fixed

treatment effect, the effect for the complete and incomplete groups

must be the same. The mixed effect model can take advantage of

this assumption and construct an estimator by weighted average of

the two estimates from the two groups, with the optimal weight in-

versely proportional to their variances. Table 5 shows the weighted

average estimator is indeed very close to mixed effect model for

both estimate and variance. The weighted average is closer to the

complete group because the variance there is much smaller than

that of the incomplete group since within-subject comparison sig-

nificantly reduces noise. This explains why the mixed effect model

can produce misleading results in within-subject analysis whenever

missing data patterns can be correlated with the treatment effect.

The Delta method, on the other hand, offers a flexible and robust

solution.

Table 5: Simulated examples: Point and variance estimates using the mixed
effect vs. weighted average estimators.

Estimate Var

mixed effect model 7.1290 0.00161

mixed effect model on complete group 7.3876 0.00180

linear model on incomplete group 5.1174 0.01133

weighted avg estimator 7.0766 0.00155

6 CONCLUDING REMARKS
Measure everything is not only an inspiring slogan, but also a crucial
step towards the holy grail of data-driven decision making. In the
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big data era, innovative technologies have tremendously advanced

user telemetry and feedback collection, and distilling insights and

knowledge from them is an imperative task for business success.

To do so, we typically apply certain statistical models at the level of

individual observations, fit the model using numerical procedures

such as solving optimization problems, and draw conclusions and

assess uncertainties from the fitted models. However, for big data

such an analytical procedure can be very challenging. Based on the

key observation that metrics are approximately normal due to the

central limit theorem, this paper offers an alternative perspective by

advocating modeling metrics, i.e., summaries or aggregations of the

original data sets, in a direct manner. By doing so, we can decom-

pose big data into small problems. However, although conceptually

sound, in practice these metric level models often involve nonlinear

transformations of data or complex data generating mechanisms,

posing several challenges for trustworthy and efficient metric ana-

lytics.

To address these issues, we promoted the Delta method’s central

role in making it possible to extend the central limit theorem to

new territories. We demonstrated how to apply the Delta method

in four real-life applications, and illustrated how this approach

naturally leads to trivially parallelizable and highly efficient im-

plementations. Among these applications, ratio metrics, clustered

randomizations and quantile metrics are all common and important

scenarios for A/B testing, and business analytics in general. Within-

subject studies are becomingmore popular for superior sensitivities,

and missing data with an unknown mechanism is ubiquitous in

both the online and offline worlds. Our contribution to technical

improvements, novel ideas and new understandings includes bias

correction for ratio metric estimation, combination of the Delta

method and outer confidence intervals for quantile metric variance

estimation, and the idea of data augmentation for general missing

data problems in within-subject studies. We also revealed the con-

nection between the Delta method and mixed effect models, and

explained their differences. In addition, we pointed out the advan-

tage of the Delta method in the presence of an unknown missing

data mechanism. Overall speaking, we hope this paper can serve as

a practical guide of applying the Delta method in large-scale metric

analyses and A/B tests, so that it is no longer just a technical detail,

but a starting point and a central piece of analytical thinking.

Although the Delta method can help tackle big data problems, it

does not replace the need for rigorous experimental designs and

probabilistic modeling. For example, “optimal” choices for cluster

configurations, randomization mechanisms and data transforma-

tions are known to increase the sensitivities of metrics [8, 32, 49].

We leave them as future research directions.
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