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Abstract

Ten years ago, CUPED (Controlled Experiments Utilizing Pre-Experiment Data) (Deng et al., 2013)
mainstreamed the idea of variance reduction leveraging pre-experiment covariates. Since its introduction,
it has been implemented, extended, and modernized by major online experimentation platforms (Xie and
Aurisset, 2016; Guo et al., 2021; Poyarkov et al., 2016; Jin and Ba, 2023; Cosgrove et al., 2022). Many
researchers and practitioners often interpret CUPED as a regression adjustment Lin (2013); Tsiatis et al.
(2008). In this article, we clarify its similarities and differences to regression adjustment and present CUPED
as a more general augmentation framework which is closer to the spirit of the 2013 paper. We show that
the augmentation view naturally leads to cleaner developments of variance reduction beyond simple average
metrics, including ratio metrics and percentile metrics. Moreover, the augmentation view can go beyond using
pre-experiment data and leverage in-experiment data, leading to significantly larger variance reduction. We
further introduce metric decomposition using approximate null augmentation (ANA) as a mental model for
in-experiment variance reduction and studied it under both a Bayesian framework and a frequentist optimal
proxy metric framework. Metric decomposition also arises naturally in conversion funnels.

1 Introduction

The CUPED method proposed by Deng et al. (2013) was inspired by the method of control variates from stochastic simulation
(Asmussen and Glynn, 2008; Owen, 2013). CUPED is a model-free method that relies only on the observation that any
pre-experiment difference between two randomized groups is pure noise due to randomization and should be 0 in expectation. The
model-free aspect is at the heart of CUPED; there is no assumption of a relationship of any form between the covariates and the
target metric, as long as they have a nonzero correlation to exploit. Also, the authors developed the theory directly on estimators
(of metrics and ∆’s), instead of modeling individual subject-level data points like regression models do. However, many blogs and
papers citing CUPED often interpret it as a regression adjustment method, focusing on defining it as averages of individual residuals.

2023 marks a decade since CUPED’s initial publication. In this work, we present CUPED as an augmentation framework
which is closer to the spirit of the in initial proposal in the 2013 paper. We show that the augmentation view naturally leads
to variance reduction beyond simple average metrics; it easily handles ratio metrics and percentile metrics as well. Moreover,
the augmentation view can go beyond using pre-experiment data and leverage in-experiment data, leading to significantly larger
variance reduction. We further introduce metric decomposition as a mental model for in-experiment variance reduction and
present a Bayesian variance reduction framework. Metric decomposition also arises naturally in conversion funnels

Notation Henceforth, we denote the observed metric value from the treatment and control groups as Mt and Mc, the unknown
true average treatment effect (ATE) as δ, and we use δ̂=Mt−Mc to denote the naive estimate of δ based on the difference
between two metric values. This is also denoted as ∆.

2 CUPED as Augmentation

2.1 Three Simple Insights that Underlie CUPED

First insight: Augmentation with Mean-Zero Term For any estimator δ̂ of δ, define a new estimator
δ̂∗= δ̂+δ̂0 (1)
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such that E
[
δ̂0

]
=0 . Then δ̂∗ is also an estimator of δ and is unbiased if δ̂ is. Thus, the CUPED estimator is a mean-preserving

augmentation of any existing estimator. The purpose of the augmentation is to find an augmentation such that Var
[
δ̂∗
]
<Var

[
δ̂
]
.

Second Insight: Optimal Variance Reduction from a Linear Family The second insight of CUPED is that variance
reduction is almost guaranteed with any mean-zero augmentation δ̂0! This is because any mean-zero augmentation
can be multiplied by a scalar θ yielding a whole family of mean-zero augmentations δ̂∗(θ) = δ̂ + θδ̂0, with variance
Var

[
δ̂∗(θ)

]
=Var

[
δ̂
]
+θ2Var

[
δ̂0

]
+2θCov

[
δ̂,̂δ0

]
. This variance is minimized when

θ :=−
Cov

[
δ̂0,̂δ

]
Var

[
δ̂0

]
with minimum variance

Var
[
δ̂∗(θ)

]
=Var

[
δ̂
]
×

1−
Cov

[
δ̂0,̂δ

]2
Var

[
δ̂
]
Var

[
δ̂0

]
=Var

[
δ̂
]
×
(
1−Corr

[
δ̂,δ̂0

]2)
.

The amount of variance reduction from augmentation by δ̂0 is equal to the correlation between the augmentation term and

the existing estimator Corr
[
δ̂,δ̂0

]2
. Any mean-zero augmentation is like a direction of gradient descent, and variance is optimally

reduced with an appropriate choice of step size.

Third Insight: Existence of Mean-Zero Augmentation The final insight of CUPED is that mean-zero augmentations are
abundant if we tap into pre-experiment period data. Let M(Xpre) be any metric computed from a (multivariate) signal X on pre-
experiment period data (e.g., f(X) or a percentile, etc.). Then ∆pre(M)=M(Xpre)t−M(Xpre)c is a mean-zero augmentation.

2.2 Relation to Regression Adjustment

When the metric of interest is a simple average and the naive estimator of ATE is the difference in means δ̂=∆(Y ), and the augmen-
tation is also a difference in means ∆(Y )∗=∆(Y )−θ∆(X), people often compare CUPED to regression adjustment of the form

Yi=α+δAi+βXi+ϵi. (ANCOVA1)
and

Yi=α+δAi+βXi+(γXi)Ai+ϵi, (ANCOVA2)
where A is the assignment indicator. Tsiatis et al. (2008) showed both ANCOVA1 and ANCOVA2 estimate δ asymptotically as

Yt−Yc−(f(Xt)−f(Xc)),

for some function f . Therefore, we can see both ANCOVA1 and ANCOVA2 asymptotically is a special form of CUPED. The
differences between ANCOVA1 and ANCOVA2 are the choice of how to fit the function f(X) using treatment and control data.
The linear regression coefficient estimator is Cov(X,Y )/Var[X]. the denominator Var[X] is the same for treatment and control.
Cov[X,Y ] are different due to the treatment effect. ANCOVA1 pools the data together and fit a linear regression. This is to use

Cov[X,Y ]=pCovT [X,Y ]+(1−p)CovC[X,Y ],

where CovT (X,Y ) is the covariance in the treatment, CovC(X,Y ) for control and p is the proportion of treatment sample
size. On the contrary, ANCOVA2 uses

Cov[X,Y ]=(1−p)CovT [X,Y ]+pCovC[X,Y ].

For CUPED, the optimal θ is

θ∗=
Cov[Yt,Xt]+Cov[Yc,Xc]

V ar[Xt]+V ar[Xc]
. (2)

This θ asymptotically converge to (1 − p)CovT [X,Y ] + pCovC[X,Y ]. Hence CUPED with this arrangement of θ is
asymptotically equivalent to ANCOVA2. Because Cov[Yt,Xt]=CovT [X,Y ]/nt and Cov[Yc,Xc]=CovC[X,Y ]/nc, we can
see covariances are weighted inversely proportional to the sample sizes. This explains why it is better to weight CovT [X,Y ]
by 1−p and CovC[X,Y ] by p, instead of using a more straightforward choice of p for CovT [X,Y ] and 1−p for CovC[X,Y ]
as in ANCOVA1. From here we also see ANCOVA2 is theoretically better than ANCOVA1, as advocated by (Lin, 2013). In
practice this difference is small unless p is away from 0.5 and CovT [X,Y ] is very different from CovC[X,Y ]. When p=0.5,
ANCOVA1 and ANCOVA2 are equivalent.
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3 Advantages of the Augmentation View

CUPED is asymptotically equivalent to ANCOVA2 when applied to simple average metrics, and also ANCOVA1 when in
addition treatment and control are equal size. But the advantage of CUPED is its augmentation view can naturally lead to variance
reduction beyond simple average metrics. The augmentation term does not even need to be related to difference of metric values
observed in treatment and control groups.

Flexible Metric Form As an augmentation to any estimator of interest, it is clear that the theory of CUPED doesn’t depend
on the metric being an average; CUPED can also be applied to percentile metrics and ratio metrics straightforwardly. These
are common challenges when practitioners try to implement CUPED with the regression residual interpretation.

Flexible Augmentation Form The augmentation δ̂0 does not have to be in the form of a difference of two metric values.
One recent development of this idea is illustrated in Deng et al. (2023b), where the augmentation term δ̂0 is constructed from
matching and balancing methods in observational causal inference.

4 Metric Decomposition with Approximately Null Augmentation (ANA)

We can take the augmentation view further into the realm where the augmentation is not guaranteed to have mean zero. This
is motivated by the idea of metric decomposition, where we decompose a metric into two components where treatment effects
are believed to be mostly captured in one of the two components.

To be more specific, let M = M1 +M2, ∆(M) = ∆(M1)+∆(M2), and the true effect also has the decomposition
δ=δ1+δ2. If δ1 is close to 0 in most cases, and M1 accounts for a significant portion of variation in M , treating ∆(M1) as
an augmentation and using ∆(M2)=∆(M)−∆(M1) can yield significant variance reduction.

Compared to CUPED, we no longer have the guarantee that the augmentation has mean zero. We call this scenario approximate
null augmentation (ANA). Let ∆˜ =(∆1,∆2) be the decomposed vector of ∆(M1) and ∆(M2), δ˜=(δ1,δ2) be the vector of
true effect for the two components. Then

∆˜∼δ˜+ε˜,where ε˜ is has known covariance matrix Σ(n) and is assumed to be approximately normally distributed from central limit
theorem. The effect δ˜ follows a bivariate distribution with covariance Λ. Our inference target is δ=δ1+δ2.

Taking an empirical Bayes approach, assuming δ˜ has mean (0,0), we can estimate Λ from a set of historical experiments
with many realization of ∆˜ .

4.1 Bayesian Variance Reduction

The first research question we studied is how decomposing a metric into two more more components changes the Bayesian
posterior distribution. In the simple normal-normal model, assuming δ˜ has mean 0 and covariance Λ, we know

E
[
δ˜|∆˜]=S∆˜ , Var

[
δ˜|∆˜]=(I−S)Λ ,

where S=Λ(Λ+Σ)−1. Since δ=(1,1)·δ˜, we derive the posterior mean to be
E[δ|∆1,∆2]=C−1[(Λ11+Λ12)(Λ22+σ22)−(Λ12+σ12)(Λ12+Λ22)]∆1

+C−1[(Λ12+Λ22)(Λ11+σ11)−(Λ12+σ12)(Λ11+Λ12)]∆2, (3)
where C=Λ11Λ22+Λ11Σ22+Λ22Σ11+Σ11Σ22−Λ2

12−2Λ12Σ12−Σ2
12.

Alternatively, without the ANA metric decomposition,
E[δ|∆]=A∆ , Var[δ|∆]=Aσ2 ,

where A= λ2

λ2+σ2 , λ2=Λ11+Λ12+Λ21+Λ22 and σ2=Σ11+Σ12+Σ21+Σ22.

ANA metric decomposition naturally lead to variance reduction under the Bayesian framework. We proved that
1T ·(I−S)Λ·1<Aσ2.

The proof is omitted here and we will demonstrate using empirical results.

4.2 Frequentist Optimal Proxy Metric with Variance Reduction

As an extension of CUPED, ANA can be used as a frequentest estimator and analyzed as a proxy metric of the form
∆∗ :=∆2+θ∆1. Comparing to Bayesian posterior mean, the main difference is that we do not put any shrinkage factor on
the signal component ∆2, and only shrink the ANA component ∆1.

3



Theorem 1. Among ANA estimators ∆∗ :=∆2+θ∆1, the mean squared error E[(δ−∆∗)2] is minimized when

θ=
Λ11−Σ12

Λ11+Σ11
. (4)

The correlation between δ and ∆∗ is maximized when

θ=
(Λ12+Σ12)(Λ12+Λ22)−(Λ11+Λ12)(Λ22+Σ22)

(Λ12+Σ12)(Λ11+Λ12)−(Λ12+Λ22)(Λ11+Σ11)
. (5)

Minimizing Effect Prediction Error ANA estimator with (4) minimizes the effect prediction error. It is a generalization
of CUPED in the sense that when Λ11=0, θ=−Σ12/Σ11 reduces to CUPED.

Maximizing Correlation The objective to maximize correlation between the true effect and the estimate is proposed in
Tripuraneni et al. (2023). Comparing (5) to (3), we see the ANA estimator ∆2+θ∆1 maximizing the correlation between
δ and ∆∗ is simply a rescaled Bayesian posterior mean estimator such that ∆2 receives no shrinkage.

5 Empirical Results

We applied Approximate Null Augmentation to 25 early stage ranking experiments at Airbnb. These early stage experiments
all run for about 1 week taking a small percentage of total traffic. The main target metric of interest is booking per guest. To
construct the ANA, we leverage counterfactual ranking results. That is, for each search, we compare the ranked results produced
by the treatment and control ranker. If a click on a booked listing is ranked in close proximity according to both rankers, or
if a click is from map and both rankers would show the listing on the map, then the attributed booking from this click would be
approximately the same regardless of the treatment assignment. In addition, we use a utility model to attribute a user’s booking to
searches (Deng et al., 2023a). The end result is for each booking, we can construct an approximate null augmentation component
representing a fraction of the booking that both rankers would have contributed almost equally.

The covariance of effect Λ and the average covariance of the noise ε˜were estimated to be (after scaled by the same constant)

Λ=

(
0.576 −0.896
−0.896 4.329

)
and E[Σ]=

(
4.020 0.169
0.169 0.811

)
.

We found the first ANA component ∆1 displays a variance 5 times of the second component ∆2; while the variance of the
effect for the ANA component is less less than 1/7 of ∆2. If the ANA component has theoretical mean 0, then the variance
of the effect should also be 0. A close to 0 effect variance and a large noise variance (both relatively, comparing to ∆2) mean
CUPED using ANA can lead to significant variance reduction with a small bias trade-off.

∆ ∆1 ∆2 ANAcorr ANAerr

4/25 2/25 8/25 8/25 8/25
Table 1: Number of statistically significant results out of 25 experiments. CUPED with ANA maximizing correlation and
minimizing error has the same number of significant results as using Component 2 only (θ=0).

Figure 1: Left: Bayesian posterior using bivariate decomposed model is smaller than without decomposition. Right: Bivariate
model produces larger absolute Bayesian Z-score.
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Figure 2: ANA maximizing correlation has a slightly smaller variance than ANA minimizing error (Left); but slightly larger
variance than ∆2 (Right). Difference in variances in these 25 experiments are all very small.

Table 1 shows using ANA with θ=0 (∆2), or maximizing correlation, or minimizing error all lead to more stat. sig. results,
comparing to the original ∆ before decomposition. Figure 1 shows posterior variance is greatly reduced with the bivariate
model. Bayesian Z-score (posterior mean over posterior standard deviation) has greater absolute value under the bivariate model.
Figure 2 compares variances of ANA with θ=0 (∆2), ANA maximizing correlation, and ANA minimizing error. All three
produces similar variances.
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