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4) Metric Decomposition: From Mean Zero to 
Approximate Mean Zero

12) Final Remarks

Recall Notation: 

Minimizing Prediction error: 

Extreme case 1: when 𝚲11 close to 0, this reduce to CUPED when augmentation 
term has mean 0. 
Extreme case 2: when 𝚺12 small, this reduce to Bayesian shrinkage for 𝚫1

This is a direct extension of CUPED when augmentation is approximately 
mean-zero
Maximizing Correlation:

We showed that this is a rescaled bivariate Bayesian posterior mean!
i.e. Bivariate Bayesian posterior with decomposition is 
           To only shrink first component,  divide by 𝛼 and let  𝜃 = 𝛽/𝛼 

7) Frequentist Optimal CUPED (cont’d)

● CUPED augments any treatment effect estimator by a zero-mean 
component. This view is more flexible and general. 

● We extend CUPED to settings where augmentation is only approximately 
with mean-zero. Specifically, when the metric can be decomposed into 
two components where one component is mostly noise.

● Metric decomposition always leads to reduced posterior variance 
● Optimize for minimizing prediction error or maximizing correlation gives 

different forms of CUPED type optimal augmentation. 
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8) Real World Application
Ideas to construct approximate mean-zero component?
1. The first order treatment effect often requires a subject to direct 

interaction with a feature. Merely exposure to the feature only yields 
second order effects

2. Model based causal surrogate as proxy to a target metric. The residual of 
the surrogate metric is approximate mean-zero if causal surrogacy 
assumption almost holds 

3. When testing ML algorithms, counterfactual ML output can be leveraged. 
We can identify cases where the treatment and control will have similar 
potential outcomes

Airbnb ranking experiments: we utilize ranking results from both treatment 
and control ranker and user’s click location (map vs. feed) to construct the 
approximate mean-zero component and decompose booking metric into 
two parts. 
Among 25 real experiments, estimated prior covariance and noise covariance 
matrix (rescaled for easier comparison): 

1) We see first component has a much smaller true effect variance than the 
second component. 

2) First component has a much larger noise variance than the second 
component. 

3) Ratio of effect variance to noise variance measures signal noise ratio. First 
component SNR is only 0.14, second component is 5.34, before 
decomposition only 0.60

The following table shows the number of stat. sig. results out of 25 
experiments. Using second the component alone, using CUPED maximizing 
correlation or minimizing error all lead to more stat. sig. results than without 
decomposition (8 vs. 4) . First component had 8% (2/25) stat. sig. not far 
from 5% if it is an exact mean-zero augmentation 

Bivariate Bayesian posterior variance is reduced by more than 50% compared 
to univariate Bayesian variance without decomposition. As a result our 
decomposition method lead to more precise Bayesian credible interval and 
higher Bayesian z-score
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1) Motivation

Statistical Power continues to be a main challenge and dominating factor in 
online experimentation quality and velocity
● Variance Reduction techniques like CUPED are widely used, but often in a 

covariate regression form which limits its applicability and impact
● A new look at CUPED:

○ CUPED is an Mean-Zero Augmentation Method
○ The source of Mean-Zero Augmentation can be beyond pre-experiment 

data, and can consider more than just simple metric differences
○ Mean-Zero Augmentations encode prior knowledge of noises vs. signal 

Here we consider Metric Decomposition as an extension of CUPED to Almost 
Mean-Zero Augmentation
● Often times domain knowledge can lead to the decomposition of a metric

where one component captures more impact from an intervention than the 
other component, while the other component can contribute a significant 
amount of noise to the metric 

● How can we leverage these kinds of decompositions to improve our 
estimation of treatment effect for  𝑀? Can we use  CUPED estimators like  

                          ?
                            

Reduction proportional to correlation

2) CUPED as Mean-Zero Augmentation

First Insight: Augmentation with Mean Zero Term
For any estimator               we can define a new estimator

This augmented estimator has the same mean as the original estimator as long 
as the augmented term has mean zero. This term can be constructed from any 
functional form of observations, and does not need to be a difference of the 
same metric from two treatment variants

Second Insight: Variance Reduction is Guaranteed
Any mean-zero augmentation term yields a whole family

The optimal 𝜃 that minimizes variance is:

with variance

Third Insight: Existence of Mean-Zero Augmentation
For controlled experiments, mean-zero augmentation always exists. For any 
metric 𝑀 computed from observations X  in the pre-experimentation period. 
The following is a mean-zero augmentation (i.e.                        )

CUPED variance reduction is determined by correlation between the 
augmentation term and the original estimator. To yield high correlation, it is best 
that the original estimator and augmentation share a common component!

If a metric can be decomposed into two components

We can interpret 

as CUPED with -1 coefficient on the first component Delta as augmentation 

● High correlation and variance reduction when first component contributes 
significantly to the combined metric 𝑀

● Delta of first component 𝑀1   is not guaranteed to have mean-zero

Main idea: With domain knowledge of what is the first order effect of the 
treatment intervention, we can construct such a decomposition so that the first 
component is affected much less than the second component by the 
treatment. 

In general, the augmentation is 

What is the optimal CUPED estimator in this setting? What is our objective for 
optimization when augmentation is not mean-zero but only approximately 
mean-zero?

6) Bayesian Variance Reduction

What difference does metric decomposition make?
Under the frequentist framework, it doesn’t change inference. Because if our 
inference target is 𝜹 = E(𝚫(𝑀)), using the normal likelihood,  𝚫(𝑀) is already the 
sufficient statistic so there is no efficiency gain from further decomposition
Decomposition changes Bayesian posterior!
    Univariate (No decomposition)

    Bivariate (decomposition)

Assuming a normal prior, we can work out the posterior mean and variance for 
both cases
Univariate: 

Bivariate:

We showed the bivariate posterior variance is always smaller than the 
univariate posterior variance, especially when one component is 
approximately mean-zero and its prior variance is small

5) Bivariate Model and Empirical Bayes

True effect vector
Our inference target is the treatment effect on the metric before 
decomposition 

Simple bivariate model: 

By CLT, we assume the noises follow a bivariate Gaussian distribution

Both covariance matrices can be estimated from data from a set of historical 
experiments

7) Frequentist Optimal CUPED 

Bayesian posterior mean has shrinkage form 
Frequentist CUPED only shrinks augmentation:
Two slightly different optimization objectives
1) minimizing prediction error

2) maximizing correlation

3) Augmentation View is Better

When 𝑀 is a simple average metric,

● CUPED is equivalent to first computing the residuals of a regression and 
then computing their difference in means.

● This interpretation is limited. CUPED as augmentation applies beyond 
simple average metric.

Flexible Metric Form (derived metrics)
The estimator is the difference in metric values, but the metric can be a derived 
metric as a function of other averages
Example 1: Ratio metric

CUPED                         no longer has a residualized form
Example 2: Percentile metric  
Flexible Augmentation Form
● Augmentation does not need to be from pre-experiment data, and it 

doesn’t need to be based on a difference of metric values
Example: One-sided triggering  Some features require opt in, and only 
treatment group users can opt in. We can construct mean-zero augmentation 
by matching treatment not opt in users with control users using observational 
causal inference techniques! (Deng et. al. 2023)

Number of Stat. sig. results


