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Abstract
Morethanadecadeago,CUPED(ControlledExperimentsUtilizing

Pre-Experiment Data) mainstreamed the idea of variance reduction

leveraging pre-experiment covariates. Since its introduction, it has

been implemented, extended, and modernized by major online ex-

perimentation platforms. Despite the wide adoption, it is known by

practitioners that the variance reduction rate from CUPED utilizing

pre-experimental data varies case by case and has a theoretical limit.

In theory, CUPED can be extended to augment a treatment effect

estimator utilizing in-experiment data, but practical guidance on

how to construct such an augmentation is lacking. In this article, we

fill this gap by proposing a new direction for sensitivity improve-

ment via treatment effect augmentation whereby a target metric of

interest is decomposed into components with high signal-to-noise

disparity. Inference in the context of this decomposition is devel-

oped using both frequentist and Bayesian theory. We provide three

real world applications demonstrating different flavors of metric

decomposition; these applications illustrate the gain in agilitymetric

decomposition yields relative to an un-decomposed analysis.

CCS Concepts
•Mathematics of computing→ Probabilistic inference prob-
lems;Hypothesis testing and confidence interval computa-
tion;Bayesian computation; •Appliedcomputing→E-commerce
infrastructure.
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1 Introduction
Online controlled experiments, also referred to as “A/B tests”, are

an invaluable tool used by companies to test and evaluate changes to

theironlineproducts.Withrespect to somemetric(s)of interest, these

experiments facilitate causal conclusions about the efficacy of such

changes. Large tech companies collectively run tens of thousands

of these experiments each year, engaging millions of users [23].

An A/B test typically compares two versions of a product: a new

treatment version to the existing control version. Interest lies in
understanding the treatment effect 𝛿 , which quantifies the poten-

tial improvement (with respect to somemetric of interest) induced

by the treatment relative to the control. Denoting the metric of in-

terest𝑀 , the treatment effect 𝛿 is commonly estimated using the

difference in metric values observed in the treatment and control

groups Δ(𝑀) :=𝑀𝑇 −𝑀𝐶 . Assuming the users are independent of

one another and randomized to the treatment and control groups,

this estimator is unbiased for 𝛿 . In some contexts, a treatment ef-

fect defined on the percent scale is preferred for ease of business

communication. This is referred to as lift, and is estimated by

Δ%(𝑀) :=
𝑀𝑇 −𝑀𝐶

𝑀𝐶
.

In A/B tests, such metrics are often defined as averages𝑀 :=𝑋 of

some measurement 𝑋𝑖 observed on each user 𝑖 = 1,2, ... ,𝑛 in the

treatment (or control) group. However, ratio and percentile metrics

may also be relevant [9, 22, 23]. In this paper, we focus on average

and ratio metrics as they account for the appreciable majority of

metrics used in practice.

Thus, inference (by way of hypothesis tests and statistical inter-

vals) for 𝛿 using Δ(𝑀) (or Δ%(𝑀)) is of interest. However, such
inference is complicated by the noisiness of thesemetrics in practice;

inference quality hinges critically on the sampling variances

Var[Δ(𝑀)] and Var[Δ%(𝑀)] .
Although sample sizes in online A/B tests are typically very large—

often at least thousands up to millions—it is widely documented by

practitioners that metrics of interest are highly variable and that

hypothesis tests for 𝛿 lack statistical power [20]. Consequently, false

negatives—when experimenters cannot detect a non-zero treatment

effect—are prevalent. Moreover, in the face of statistically significant

(abbreviated as stat. sig. henceforth) results, the estimated treatment

effect Δ(𝑀) (or Δ%(𝑀)) often over exaggerates the true treatment

effect 𝛿 yielding false discoveries [18, 21].

https://doi.org/10.1145/3637528.3671556
https://doi.org/10.1145/3637528.3671556
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Therefore, there is great interest in increasing sensitivity of met-

rics; for a givenmetric𝑀 , determining how to construct an estimator

of the treatment effect 𝛿 with low bias and small variance remains

one of the most critical statistical challenges for A/B testing re-

search [3, 20, 23]. Assuming an unbiased estimator, themethodmost

widely applied in industry to reducevariability isCUPED(Controlled

experiments Utilizing Pre-Experimental Data) or its variants and

extensions [7, 12, 13]. The general idea with this class of methods

is to use in place of𝑀 an alternative version of the metric that is

augmented by a second metric highly correlated with𝑀 . Another

class of methods recently gaining traction is the use of surrogate
metrics in place of𝑀 . Such surrogates are chosen or designed to be

proxies for𝑀 with higher sensitivity [15].

In this paper, we propose novel methodology for increasing the

sensitivity of metrics and hence treatment effect estimators that

represents a new direction on this problem. In particular, we propose

decomposing the metric of interest into two or more components in

an attempt to isolate thosewith high signal and lownoise from those

with low signal and high noise. The paper demonstrates both empir-

ically and theoretically the value of this practice in both frequentist

and Bayesian settings.

1.1 Metric Decomposition
Consider an additive decomposition of a metric 𝑀 as follows

𝑀 =𝑀1+𝑀2. This decomposition implies the following decomposi-

tion of the estimator

Δ(𝑀)=Δ(𝑀1)+Δ(𝑀2) , (1)

where the true effect to be estimated also has the decomposition

𝛿 = 𝛿1 + 𝛿2. Multiplicative decompositions such as 𝑀 = 𝑀1 ×𝑀2

may also be of interest. In a treatment vs. control comparison, if

we observe percent lifts Δ%(𝑀1) and Δ%(𝑀2), by the multiplicative

decomposition, we have

𝑀𝑇 =𝑀1,𝑇 ×𝑀2,𝑇

= [1+Δ%(𝑀1)]𝑀1,𝐶×[1+Δ%(𝑀2)]𝑀2,𝐶

=𝑀𝐶×[1+Δ%(𝑀1)] [1+Δ%(𝑀2)] .
Dividing both sides by𝑀𝐶 and expanding the right hand side, we see

𝑀𝑇

𝑀𝐶
−1=Δ%(𝑀1)+Δ%(𝑀2)+Δ%(𝑀1) ·Δ%(𝑀2) .

The left hand side is the percent treatment effectΔ%(𝑀), and the last
term on the right hand side is an ignorable second order term.When

bothΔ%(𝑀1) andΔ%(𝑀2) are relatively small,which isoften thecase

in A/B tests where even a 10% change is commonly deemed extreme,

the following approximate additive decomposition is appropriate

Δ%(𝑀) ≈Δ%(𝑀1)+Δ%(𝑀2) . (2)

With a unified (though slight abuse of) notation, we let 𝛿 ≈𝛿1+𝛿2

represent the ground truth multiplicative treatment effect. Thus de-

compositions ofΔ(𝑀) andΔ%(𝑀)will both be treated as additive no
matter whether the decomposition of𝑀 is additive or multiplicative.

Note that the above decompositions assume the metric𝑀 decom-

poses into𝑘 =2 components, but context and/or engineered solutions

may dictate a decomposition into any number of components, e.g.,

𝑀 =𝑀1+···+𝑀𝑘 or 𝑀 =𝑀1×···×𝑀𝑘 .

We address (and develop theory for) this more general case in this

paper.

Where does a decomposition come from?
Contextmaydictate anatural decomposition. If𝑀 is a simple average

𝑋 , an additive decomposition can come from breaking each observa-

tion𝑋𝑖 into two (or more) parts. Similarly, when𝑀 is a ratio metric

𝑋/𝑌 , an additive decomposition can be constructed from a decompo-

sition of the numerator𝑋 .Multiplicative decompositions such as𝑋 =

𝑋

𝑌
×𝑌 also occur naturally. For example, multiplicative metric chain-

ing is common in conditional funnels; if a conversion funnel involves

multiple steps, then a conversion rate𝑌 at an intermediate step can

be used to decompose the overall conversion rate𝑋 multiplicatively.

Similarly, common revenue metrics such as revenue per user can be

decomposed into revenue per purchase, and purchases per user.

More generally, both additive and multiplicative decompositions

can be engineered by defining one of the components and then taking

the second component to be the additive or multiplicative comple-

ment. Specifically, let 𝑀1 be any arbitrary metric, we can define

𝑀2 as𝑀−𝑀1 (in the additive case), or𝑀/𝑀1 (in the multiplicative

case). With this construction, we can always get a syntheticmetric

decomposition. In Section 3, we illustrate real-world examples of

both contextual and engineered decompositions.

Why is metric decomposition useful?
In Sections 2 and 4we respectively develop frequentist and Bayesian

theory for how to leverage decompositions to improve the sensitivity

of treatment effect estimators relative to the standard approachwith-

out decomposition. Then, in Section 3, we provide three real-world

applications of metric decomposition to illustrate how these meth-

ods can be employed in practice. Here, we motivate at a high-level

the value of metric decomposition from both the frequentist and

Bayesian perspectives.

In the frequentist setting, we propose defining a new treatment

effect estimator as a function of the components. Illustrating the

basic idea with 𝑘 =2 components, we have

Δ∗ (𝜃 ) :=Δ1+𝜃 ·Δ2 (3)

where Δ1 and Δ2 are suppressed notation for Δ(𝑀1) and Δ(𝑀2).
Clearly, the original estimator from (1) arises as a special case when

𝜃 =1, but the formulation in (3) allows for optimization of different

objectives with respect to 𝜃 . Such objectives may include variance

reduction, mean squared error reduction, or power boosting. As we

demonstrate in Section 2.2, the proposed framework is flexible to a

variety of different objectives.

Keen readers familiar with variance reduction and CUPED [12]

will recognize this form of regression adjustment. When the compo-

nent Δ2 has no treatment effect, i.e., 𝛿2=0, we know 𝛿 =𝛿1. Instead

of using Δ=Δ1+Δ2, we can directly use Δ1 as an estimator if it has

a smaller variance than Δ. Or, more generally, we can find 𝜃 that

minimizes variance in the family of (3). However, in general, beyond

using pre-experiment data as suggested by CUPED, it is hard to

construct a componentΔ2 with theoretically 0 treatment effect. Nev-

ertheless, as we demonstrate in this paper, it is commonly possible

to define a decomposition in which the components have drastically

different signal-to-noise ratios (SNRs), with one component captur-

ing the majority of the treatment effect and the other component(s)

capturing much less treatment effect and a large proportion of noise.

Withmetric decomposition,we can exploit this kind of SNR disparity.
In this way, the estimator in (3) based on metric decomposition can
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be seen as a generalization of CUPED, where rather than adjusting

by a null-effect term (i.e., mean-zero augmentation) [13], we adjust

by an almost null-effect term. We refer to the adjustment made with

estimators in the form of (3) as approximately null augmentation, or
ANA. This perspective will be formalized in Section 2.

From a Bayesian perspective, inference for 𝛿 is carried out via pos-

terior analyses. Of interest here are the two posterior distributions

𝑝 (𝛿 |Δ) and 𝑝 (𝛿 |Δ1,Δ2),
where the first would be used in a standard analysis and the second

exploits the decomposition. As we formalize in Section 4, we can ex-

pect the posterior distribution 𝑝 (𝛿 |Δ1,Δ2) to have smaller posterior

variance than 𝑝 (𝛿 |Δ). Moreover, certain prior information can also

lead to 𝑝 (𝛿 |Δ1,Δ2) being concentrated more closely around 𝛿 than

𝑝 (𝛿 |Δ). Thus, from a Bayesian perspective, sensitivity and hence the

quality of inference can also be improved by metric decomposition.

1.2 Setup and Notation
We assume the target of inference is the treatment effect 𝛿 , which

quantifies the additive (or percent) difference between treatment

and control with respect to some metric𝑀 . We further assume𝑀

decomposes into a sum (or product) of components𝑀1, ...,𝑀𝑘 . In

either case, as discussed in Section 1.1, we assume that Δ(𝑀) =
Δ1 (𝑀)+···+Δ𝑘 (𝑀) estimates the treatment effect 𝛿 which similarly

decomposes: 𝛿 = 𝛿1 + ··· +𝛿𝑘 . Although in this paper we will illus-

trate metric decomposition for the basic 𝑘 =2 component version,

we develop theory for the general 𝑘 > 2 component case as well.

Throughout we’ll use the vector notation 𝚫= (Δ1,...,Δ𝑘 ) to repre-
sent observed treatment effects and 𝜹 = (𝛿1,...,𝛿𝑘 ) to represent true
treatment effects. We adopt the following random effect model

𝚫=𝜹+𝜺 , (4)

where 𝜹 and 𝜺 are both random vectors which are assumed to be

independent of one another. This model is meant to characterize the

variation in observed treatment effects across a population of A/B

tests (e.g., across all the A/B tests run by a given organization). The

random vector 𝜹 reflects variation in true treatment effects across

theseexperimentsand the randomvector 𝜺 reflectsnoise in treatment

effect estimation. For large scaleA/B tests, it is common to exploit the

central limit theorem and assume that 𝜺 ¤∼N (0,𝚺). We further follow

industry convention and assume the covariancematrix𝚺 is fixed and

known, where the “known” values are found using sample variances

and covariances based on past experiments. For a given experiment,

this covariance matrix is a function of sample size 𝑛 though we

suppress notation and do not notate this dependence explicitly.

We also posit that 𝜹 follows a distributionwithmean E[𝜹]=0 and
covariancematrixVar[𝜹]=𝚲.Note thatunlike 𝜺,which followsanor-
mal distributiondue to the central limit theorem,wedonot ingeneral

assume𝜹 follows a normal distribution
1
. The zero-mean assumption

reflects the reality that across an organization’s population of A/B

tests, resultswill bepositive, negative, null, and likelynull onaverage.

We remark that 𝚲 can be estimated empirically from data. For exam-

ple, suppose we observe 𝑁 equal sample-sized experiment results

each with the observed vector𝚫𝑠 , 𝑠 =1,...,𝑁 . By the independence of

𝜹 and 𝜺, the covariance of the observed𝚫 has a trivial decomposition

Var[𝚫]=Var[𝜹]+Var[𝜺]=𝚲+𝚺 .

1
A normality assumption for 𝜹 is however made in Section 4 when we take a Bayesian

view of the problem.

This leads to a sample estimate of𝚲 defined as the difference between

the sample covariance matrix of 𝚫 and the noise covariance matrix

𝚺. When sample sizes for the set of experiments are different, we

can instead use a sample average of 𝚺𝑠 , 𝑠 =1,...,𝑁 . There exist other

and more robust ways to estimate 𝚲, but this line of research is or-

thogonal to the metric decomposition methods we propose here. In

this paper we’ll simply assume an estimate of 𝚲 is already available.

Weend this sectionbyemphasizing the symbol𝛿 will beused tode-

scribe the true unknown treatment effect in a single experiment, but

also the random variable representing variation in true treatment ef-

fects across a population of experiments. Thoughwe take care to dis-

tinguish this, context should dictate which version of 𝛿 is being used.

1.3 Contributions
This paper makes the following contributions to the online exper-

imentation and measurement science literature:

(1) A new framework for treatment effect estimation that exploits

metric decomposition from both frequentist (see Section 2) and

Bayesian (see Section 4) perspectives. We also share the code to

implement and reproduce our simulation studies
2
.

(2) Real-world applications of this new methodology in three dif-

ferent flavors: (i) engineered decomposition, (ii) natural funnel

decomposition, and (iii) adjustment of a surrogate metric. These

applications are detailed Section 3.

2 Frequentist View ofMetric Decomposition
Here we overview the frequentist motivation for metric decom-

position. See Section 4 for an elaboration of the Bayesianmotivation

for decomposition.

2.1 Approximately Null Augmentation
In Section 1.1 we argued that metric decomposition can exploit

disparity in signal-to-noise ratios (SNRs). We define the SNR as

Var[𝛿]
Var[𝜀] . (5)

Given a decompositionwith effect variance𝚲 andnoise variance𝚺, if

one component, say the first component (without loss of generality),

has an SNR Λ11/Σ11 that is much larger than the other components,

the intuition is that Δ1 is the most useful component for estimating

𝛿 . And although the other components provide much less signal,

they can still be useful as an (approximately null augmentation)

adjustment to Δ1. This leads us to the following definition.

Definition 2.1 (Approximately Null Augmentation). ANA refers

to the family of estimators Δ∗ (𝒄) := 𝒄⊺𝚫 where 𝒄⊺𝒆1 = 1 for the

standard basis vector 𝒆1 ∈R𝑘 . Note that when 𝑘 =2, this reduces to

(3) with 𝒄 = (1,𝜃 ).

The theoretical results developed in this sectionaddress the follow-

ing question of theoretical and practical importance. For the purpose

of estimating 𝛿 =1⊺
𝑘
𝜹 in a manner that leverages the SNR disparity

and approximately null augmentation, what vector 𝒄 should we use?
In Section 2.2, we define five potential objectives that may be used

to find the optimal augmentation vector 𝒄 , and for each we state the
optimal coefficients. In Section 2.3 we explore how the proposed

metric decomposition method is related to and different from exist-

ing variance reduction methods like CUPED and the use of more

sensitive surrogate metrics.

2
https://github.com/lmhagar/MetricDecomp



KDD ’24, August 25–29, 2024, Barcelona, Spain Alex Deng, Luke Hagar, Nathaniel T. Stevens, Tatiana Xifara, and Amit Gandhi

2.2 ANAObjectives
Note that for brevity and consistencywith the examples in Section

3, we consider the 𝑘 = 2 case here, and hence define the optimal 𝜃

for each objective. In Appendix A we provide the corresponding

derivations and also consider the more general 𝑘 >2 case.

MinimizingMean Squared Error.We consider minimizing the

MSE of the ANA estimator: E[(𝛿−Δ∗)2]. Doing so balances bias and
variance for better point estimation of effect size at the organiza-

tional level. This is a standard regression objective, except that the

response 𝛿 is not directly observed. However, because the solution

for the regression coefficients involves only the covariance of 𝛿 and

the regressors 𝚫, which can all be estimated, we are still able to

compute the regression coefficients. See also [5, 26, 28].With respect

to model (4), the value of 𝜃 that minimizes E[(𝛿−Δ∗)2] is

𝜃 =
Λ22−Σ12

Λ22+Σ22

. (6)

Maximizing Correlation. Tripuraneni et al. [28] in a slightly

different context suggest maximizing Corr[𝛿,Δ∗], the correlation
between 𝛿 and Δ∗

. This criterion is useful from the perspective of

treating Δ∗
as a surrogate metric not just for estimating 𝛿 but also

for understanding the direction (i.e., sign) of the effect. With respect

to model (4), the value of 𝜃 that maximizes Corr[𝛿,Δ∗] is

𝜃 =
(Λ12+𝚺12) (Λ11+Λ12)−(Λ12+Λ22) (Λ11+Σ11)
(Λ12+Σ12) (Λ12+Λ22)−(Λ11+Λ12) (Λ22+Σ22)

. (7)

It is also interesting topointout that theANAmaximizingcorrelation

is just a rescaled version of the posterior mean E[𝛿 |𝚫].
Minimizing Error Variance. Whereas minimizing MSE will

inherently address the bias-variance trade-off associated with ap-

proximately null augmentation, another sensible objective would

be to directly minimize the error variance Var[𝒄⊺𝜺]. This serves as a
lower bound forwhat variance reduction is possible, as it corresponds
to the optimal adjustment in CUPED.With respect to model (4), the

value of 𝜃 that minimizes Var[𝒄⊺𝜺] is

𝜃 =
−Σ12

Σ22

. (8)

Maximizing Expected Squared Z-Score. The test statistic as-
sociated with𝐻0 :𝛿 =0 in an ANA analysis is the following Z-score:

Δ∗/
√︁

Var[𝜀1+𝜃𝜀2]. To increase the sensitivity of this test we may

seek to find the augmentation that maximizes the expected magni-

tude of this test statistic. We operationalize this by maximizing the

expected square of this test statistic, which based on model (4) is

Var[Δ∗]/Var[𝜀1+𝜃𝜀2]. The optimal value of 𝜃 for this objective is

𝜃 =
−𝑏−

√
𝑏2−4𝑎𝑐

2𝑎
(9)

with 𝑎=Λ22Σ12−Λ12Σ22, 𝑏=Λ22Σ11−Λ11Σ22, 𝑐 =Λ12Σ11−Λ11Σ12.

Maximizing Power. While maximizing the expected Z-score

seeks to increase sensitivity when testing 𝐻0 : 𝛿 = 0, this may be

achieved more directly by maximizing power. Whereas the previous

objective marginalizes over the distribution of possible 𝛿 values, we

may seek to maximize the Z-score for a specifically selected (posi-

tive)
¤𝛿 that reflects (for instance) an anticipated effect size of interest.

Exploiting the decomposition
¤𝛿 = ¤𝛿1 + ¤𝛿2, the test statistic for this

anticipated effect is ( ¤𝛿1 +𝜃 ¤𝛿2)/
√︁

Var[𝜀1+𝜃𝜀2]. The value of 𝜃 that

maximizes this test statistic (and hence power) is

𝜃 =
¤𝛿1Σ12− ¤𝛿2Σ11

¤𝛿2Σ12− ¤𝛿1Σ22

. (10)

Note that rather than specifying a single effect of interest ¤𝛿3, a con-
tinuum of

¤𝛿 values could be specified and we could maximize an

“integrated” test statistic that aggregates across theplausible
¤𝛿 values.

In this case the optimal 𝜃 is given by (10) but with ¤𝛿1 and
¤𝛿2 replaced

by
¯𝛿1 and

¯𝛿2 which denote the average of the
¤𝛿1 and

¤𝛿2 values across

the continuum of interest.

Weacknowledge thatmaximizingpowerand theexpectedsquared

Z-score will lead to an increase in test rejection, but they may lead

to increasingly biased point estimates of the true effect for the un-

decomposed metric, especially when 𝜃 is far away from the region

[0,1]. Therefore, we recommend bounding 𝜃 within [0,1] when op-

timizing for power or the expected squared Z-score.

When choosing among objectives, one must recognize that there

is no uniformly superior objective; which is appropriate depends on

a practitioner’s goals. If interest lies in accurately and precisely esti-

mating the treatment effect,minimizingMSE is a sensible objective; a

practitioner primarily interested in determining the sign of the effect

may seek to maximize correlation; and a practitioner interested in

increasing test sensitivity may seek to maximize power. That said,

in practice, if we are able to find decompositions with very high

SNR disparities, ANAwith different objectives will not bematerially

different. This is illustrated in the first two applications in Section 3.

It’s also important to emphasize that all of these objectives are

defined with respect to model (4). This means that the optimal aug-

mentations are optimal at the organizational level. This does not

necessarily imply that the objectives are satisfied at the individual

experiment level. In future work, we plan to use simulation to in-

vestigate the extent to which the objectives are/ are not satisfied for

individual experiments.

2.3 Relation to ExisitingWork
Metric decomposition follows from existing work aimed at in-

creasing metric sensitivity and statistical power. It is closely related

to CUPED, in that it augments the treatment effect estimator in the

interest of improving sensitivity. Metric decomposition can also be

viewed as a more sensitive surrogate metric of the original metric

of interest. Procedures to find the optimal augmentation 𝒄 using a
set of historical experiment results is also a form ofmeta-analysis,
and is related to an empirical Bayesian analysis of experiments. In

the subsections below, we describe these connections to existing

methodology in more detail.

2.3.1 CUPED TheCUPEDmethod [12]was inspired by themethod

of control variates from stochastic simulation [1, 25]. CUPED is a

model-free method that relies only on the key observation that any

pre-experiment difference between two randomized groups is pure

noise due to randomization and should be 0 in expectation as it esti-

mates a null effect. Deng et al. [13] formulated CUPED as mean-zero

augmentation:

Δ∗=Δ+𝜃 ·Δ0 . (11)

This is similar to the two-component ANA in (3), but it differs in

that the augmentation term Δ0 in CUPED is assumed to be ex-

actly zero in expectation. From equation (6) we see that the optimal

ANA that minimizes MSE contains the optimal CUPED adjustment

3
In the applications in Section 3, we take

¤𝛿1 to be the 95th percentile of N(0,Λ11 )
(calibrating to detect reasonably large effects) and

¤𝛿2 = Λ12
¤𝛿1/Λ11 (the mean of the

conditional distribution of 𝛿2 |𝛿1 = ¤𝛿1).
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(−Cov[𝜀1,𝜀2]/Var[𝜀2]) as a special casewhen theANAis in fact anex-

actmean zero augmentation (i.e., whenΛ22=Var[𝛿2]=0). This is the

ANA that minimizes error variance in (8). Importantly, the augmen-

tation term in ANA also need not come from pre-experimental data.

ANAisanontrivial extensionanda fundamentallydifferentwayto

construct augmentations, often with a much greater variance reduc-

tion possible. Beyond using pre-experiment period data or relying

on triggering conditions [8, 13], there aren’t manyways to construct

true mean-zero augmentations. It is documented by various sources

(e.g., [4, 7]) that the amount of variance reduction elicited by CUPED

varies and in many cases can be as little as 10% or less. Recently, it

has also been shown that CUPED using pre-experiment data has a

variance reduction limit [27]. Greater variance reduction can only

be achieved with augmentation terms from in-experiment signals.

Metric decomposition stems from the idea of using in-experiment

observations to directly construct approximately null components

with lowSNRs.Aswehave seen, the theory ofANAgives the optimal

adjustment to suit a variety of objectives.

2.3.2 Surrogate Metrics Instead of restricting attention to unbiased

estimators for a target metric 𝑀 , the surrogate metric literature

(e.g., [2, 5, 7, 15, 28]) aims to use another metric—which may be an

existing metric, a functional combination of a set of metrics, or a

model prediction of the target metric—as a proxy. Surrogate metrics

can often achieve greater variance reduction and greatly improve

experimentation agility when the target metric has low statistical

power. However, one drawback is that surrogate metrics are gener-

ally biased, with the degree of bias varying case by case. Choosing

and evaluating surrogate metrics is an active research area in the

A/B testing community [23].

Metric decomposition shares the similar goal of using apotentially

biased estimator in pursuit of increased sensitivity. ANAdiffers from

methodologies in the surrogate metric literature, however, because

we define explicitly how these potentially biased estimators arise

by breaking the target metric into components, instead of choosing

from a cohort of existing metrics or linear combinations thereof.

Moreover, the metric decomposition approach leads to further im-

provement for any surrogate metric, because the target metric can

be decomposed by the surrogate and its residual (additive or mul-

tiplicative). In this way, ANA can be applied to further adjust any

surrogate metric by its residual. We elaborate on this in more detail,

and provide a real example in Section 3.3.

2.3.3 Meta Analysis and Empirical Bayes The way we use a set of
historical experiments to aid metric development is a form ofmeta-
analysis [11, 17, 28]. The framework of estimating the parameters of

the distribution of the treatment effect 𝜹 is also a form of empirical

Bayes [6, 10, 14, 16, 24, 29] and multilevel (hierarchical) modeling

[19]. But to the authors’ knowledge, we are the first to study the im-

plications of replacing an observed metric value with a decomposed

vector.

3 Real-world Applications
To apply metric decomposition with approximate null augmenta-

tion, we require one or more approximately null components (ANCs)
(i.e., Δ2 in (3) or Δ2,...,Δ𝑘 in Definition 2.1). This requires leverag-

ing domain knowledge and additional information to answer the

questionwhat part of the measured outcomes is not attributed to the

treatment intervention? In this sectionwe illustrate threeapplications
of ANAwhere bivariate metric decompositions arise by engineering

an ANC (Section 3.1), identifying an ANC that arises naturally in

a funnel decomposition (Section 3.2), and defining an ANC in the

context of a surrogate metric (Section 3.3). In each of these sections

we find that ANA improves sensitivity and increases the number

of stat. sig. results. Through A/A tests and type I error control, in

Section 3.4 we demonstrate that ANA does not arbitrarily increase
sensitivity, it increases sensitivity to non-null effects only.

3.1 Engineering an Approximately Null
Component via Counterfactual Reasoning

We applied approximately null augmentation to 39 early-stage

ranking experiments atAirbnb. The goal of these experimentswas to

compare two versions of the ranking algorithm that determines the

order of displayed search results. These early-stage experiments run

for roughly 1week taking a small percentageof total traffic.Themain

target metric of interest is bookings per guest. For each search, a user
is given the ranked resultswhichdetermines both (i) the list of results

shown in the feed view and on the map view, and (ii) the order of the

results listed in the feed view. See Figure 1 for an example of the feed

view and the map view together in the desktop browser experience.

In the iOSandAndroidapps,users canswitchbetween the twoviews.

Figure 1: ExampleAirbnb SearchResults. FeedView (left) andMapView (right).

To construct the ANC, we leverage counterfactual ranking results.

That is, for treated users (those for whom the treatment ranker gen-

erated their ranked feeds and corresponding map view), we also

compute the ranked list thatwould have been shown to them if they

were assigned to the control group. For control users we similarly

computed the ranked list that would have been shown to them had

they been assigned to the treatment group.We then construct the

approximately null component as described in the following steps:

(1) For each booking conversion, we used attribution logic to at-

tribute the booking to click actions from various search result

pages. The attribution is additive such that the sum of the attrib-

uted values is 1 for every booking. In this way, the attributed

values provide information on the relative importance of var-

ious click actions on the booking. Attribution methods are an

important research area in their own right. See Deng et al. [7]

for more discussion of the attribution logic and the method used

in our application.

(2) We then select a subset of attributed search result clicks leading

to every booking. A click is selected if:

(a) the clicked result is ranked among the top 4 results by both

the treatment and the control ranker, with a ranked position

difference no more than 2, or
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(b) both treatment and control rankers show the clicked result

on the map view, and the click happens only on the map (i.e.,

there was no click on the feed view).

(3) For each booking, define the ANC (Component 2, Δ2) as the

sum of attributed values for all selected clicks from the last step.

The signal component (Component 1, Δ1) is straightforwardly

defined as the complement of the decomposition such that the

two components sum to 1. In other words, Component 1 is the

sum of all attributed values from clicks that were not included
in the last step.

(4) Aggregate decomposed bookings to the user level and then to

the treatment/control group level.

Theheuristics behind this process canbe explained as follows. The

criterion in 2(a) considers cases where the booked listing was highly

ranked by both the factual and the counterfactual rankers. This kind

of booked listing is considered “easy” in the sense that any sensible

ranker would put this listing within the first few results. Moreover,

we require the ranked position difference to be nomore than 2 to fur-

ther restrict the proximity of the two rankers on this booked listing’s

position. The intuition is that this type of booking would have hap-

pened regardless of which ranker was used, and thus the treatment

effect should be approximately null. The criterion in 2(b) is based on

the assumption that if search results are clicked on the map (i.e., not

the feed view), and both rankers put this listing on the map, then the

booking would happen regardless of which ranker was used. Thus

the treatment effect for such clicks should be approximately null.

Note that theseheuristics ignore secondorder effects like thepossibil-

ity that a user’s booking behavior also depends on the the whole set

of the results, not just the ranked position of the booked listing. How-

ever,wedonot aimnor doweneed to guarantee zero treatment effect

on Component 2, we only aspire to limit the treatment effect on this

component so it has amuch smaller effect compared toComponent 1.

The effect covariance 𝚲 and the average covariance of the noise

𝜺 were estimated to be (after scaling by the same constant)

𝚲=

(
3.479 −0.979

−0.979 0.672

)
and 𝚺=

(
0.779 0.162

0.162 4.096

)
.

We find the approximately null component Δ2 displays a noise vari-

ance 5 times larger than the signal component Δ1 (4.096 vs. 0.779),

while the variance of the treatment effects for Δ2 is less than 1/5 of

that of Δ1 (0.672 vs. 3.479). This means the SNR of Component 2 is

much smaller than that of Component 1 (see equation (5)).

Table 1 summarizes these results and shows that the SNRs of the

two components differ by almost a factor of 30. Component 1’s SNR

is alsomore than 10 times greater than the SNR of the originalmetric

without decomposition. This suggests that if Component 2’s effect is

truly much smaller than Component 1, Δ1 alone can be an estimate

for the target metric’s treatment effect, with smaller noise variance

andhencemuchgreater statistical power. Indeed, among the 39 early-

stage experiments, Component 2was stat. sig. at a 5% level only twice

(i.e., 5.1% of the time). This is very close to the 5% significance level,

indicating that Component 2 is approximately null. Component 1,

on the other hand, was stat. sig. in 13 of the 39 experiments.Without

metric decomposition, the booking metric was only stat. sig. 6 times.

We applied the five versions of ANA adjustment discussed in

Section 2.2 in this example: ANA to maximize correlation (denoted

ANAc), to minimize mean squared error (denoted ANAe), to mini-

mize variance (denoted ANAv), to maximize the expected squared

Z-score (denoted ANAz) and to maximize power (denoted ANAp).

Table 1 demonstrates that all these adjustmentmethods yield similar

results to analyses using Component 1 alone, though ANAe has one

less stat. sig. result out of 39 experiments. This is because the adjust-

ment coefficient 𝜃 for all objectives tends to be relatively small for

these experiments. Figure 2 plots the optimal 𝜃 values. We see these

values range between -0.2 to 0.2. Figure 3 shows the five ANA esti-

mates Δ∗
. Despite different objectives, estimates in this application

don’t differmaterially, aligningwith the similar test results inTable 1.

Finally, Figure 4 compares the variances of these ANA estimators.

We see that minimum variance objective (ANAv) provides the lower

bound of what variance is achievable through augmentation. In gen-

eral, minimizing variance directly could lead to more bias relative

to using the high SNR component (Δ1) alone, since the second com-

ponent (Δ2) is only approximately null. However, in this application

Component 2’s SNR is so low (relative to Component 1), it suggests

augmentation by Component 2 is essentially a null augmentation.

Figure 2: Optimal 𝜃 for various ANA objectives in Application 1.

Figure 3: Comparison of ANA estimates in Application 1.

Figure 4: Comparison of ANA estimator variances in Application 1.
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Comp. 1 (Δ1) Comp. 2 (Δ2) No Decomposition (Δ) ANAc (Δ
∗
𝑐 ) ANAe (Δ

∗
𝑒 ) ANAv (Δ

∗
𝑣 ) ANAz (Δ

∗
𝑧 ) ANAp (Δ

∗
𝑝 )

Signal: Var[𝛿] 3.479 0.672 2.193

Noise: Var[𝜀] 0.779 4.096 5.198

Signal-Noise-Ratio 4.466 0.164 0.422
Proportion of Stat. Sig. 13/39 (33.3%) 2/39 (5.1%) 6/39 (15.4%) 13/39 (33.3%) 12/39 (30.8%) 13/39 (33.3%) 13/39 (33.3%) 13/39 (33.3%)

Table 1: Results of Application 1 (Engineering an ANC via Counterfactual Reasoning).

3.2 AMetric
with Natural Multiplicative Decomposition

In the last section we exploited domain knowledge and context-

specific information to engineer an approximately null component.

Herewe consider a context inwhich anANCarises naturally in a con-

version funnelwhere the treatment interventionmainly impacts one

step of the funnel and has close to zero impact on the other steps. To

illustrate this, we study the metric nights per guest which quantifies
the number of nights booked per guest. Thismetric naturally decom-

poses into nights per booking, and bookings per guest. As explained
in Section 1.1, a multiplicative decomposition of percent treatment

effects can be treated as an additive decomposition when the lifts

are expected to be small. In this study, we use the decomposition

Δ%(Nights/Guest) ≈Δ%(Nights/Booking)+Δ%(Bookings/Guest)

where Δ%(Nights/Booking) is the approximately null component

(Δ2), and Δ%(Bookings/Guest) is the signal component (Δ1).

We analyze 116 past A/B tests separately with each of the three

metrics: nights per guest, nights per booking, and bookings per

guest. The results are summarized in Table 2. Generally speaking,

the results are very similar to those from the previous application

in Table 1. First, Component 2 (nights per booking) has close to

5% empirical stat. sig. rate (5 out of 116) with a very low SNR of

0.014. Second, Component 1 (bookings per guest) has a much larger

SNR, and higher empirical stat. sig. rate. (30 out of 116). Analysis

with Component 1 also shows better performance than an analysis

without decomposition (i.e., analyzing with respect to nights per

booking), which has just 11 out of 116 stat. sig. results. Further, anal-

yses with all five ANA adjustments give similar results to analyses

with Component 1 alone. As with the previous application, this is

because the optimal𝜃 values (thoughnot pictured here) are close to 0.

3.3 Adjustment of a SurrogateMetric
As discussed in Section 2.3, an important area of related work

that also seeks to increase metric sensitivity is to build a surrogate

or proxy metric. The goal is to use one or more candidate metrics

to form an index to better track the treatment effect of a metric of

interest, or construct a model-based prediction for the metric of

interest using a set of predictors [2, 7, 15, 28].

Let 𝑆 be a surrogate metric for a metric 𝑀 , then this implies a

decomposition

Δ(𝑀)=Δ(𝑆)+Δ(𝑅) ,

where 𝑅 =𝑀−𝑆 is the residual. Therefore any surrogate metric is

always associated with a decomposition, and the surrogate metric

framework can therefore be seen as a special case of metric decom-

position. Moreover, if a surrogate metric is unbiased, then

E[Δ(𝑀)]=E[Δ(𝑆)] ,

andE[Δ(𝑅)]=0. Thismeans a surrogatewithout bias is also a decom-

position with null augmentation!
4
However, in practice we don’t

expect to achieve an unbiased surrogate and instead aim for small

bias; this of course lends itself well to the benefits of approximately

null augmentation. Thus, we advocate for the general use of the

metric decomposition and ANA framework for two reasons:

(1) Defining surrogate metrics and then verifying their small bias is

often harder than directly constructing a decomposition that has

an approximately null effect. The latter is more straightforward

because we can leverage natural decompositions from conver-

sion funnels or leverage domain knowledge and counterfactual

information, as demonstrated in the previous two applications.

(2) Even when a surrogate metric is available, we can always ap-

ply an ANA adjustment to the decomposition implied by the

surrogate and its residual.

This latter point is illustrated in this application where we took

a surrogate metric for booking-per-guest and studied its decompo-

sition across 133 experiments. This surrogate metric utilizes a set of

upper funnel signals to predict a future conversion. It is known that

this type of surrogatemetric is only unbiased under strong surrogacy

assumptions [2]. Table 3 summarizes the results. Comparing to the

previous two applications, one distinct difference is that Component

2 (the residual) has a noticeably greater SNR (1.044), and a higher

(12.8%, 17 out of 133) stat. sig. rate than the nominal 5% significance

level. This indicates that Component 2 may still contain some treat-

ment effect not fully captured by the surrogate metric (Component

1). Nevertheless, relative to the original (un-decomposed)metric, the

surrogate component has a greater SNR (6.456 vs. 1.794) and higher

statistical power (55 out of 133 stat. sig. results compared to 34 out

of 133).

ANA in this case would create an adjusted estimate of the form

Δ(𝑆)+𝜃 [Δ(𝑀)−Δ(𝑆)], that pulls the surrogate metric closer to the

original metric by the factor of 𝜃 . Figure 5 displays the optimal ANA

𝜃 across these experiments for each of the 5 objectives discussed in

Section 2.2. We see that maximizing correlation and minimizing er-

ror resulted in larger 𝜃 ranging from 0.4 to 0.8, and a smaller number

of stat. sig. results (45 out of 133). On the other hand, minimizing

variance, maximizing expected squared Z-score, and maximizing

power resulted in smaller values of 𝜃 (ranging between 0 and 0.3) so

the ANA estimator is closer to using the surrogate metric (Compo-

nent 1, Δ1) directly. Interestingly, these latter 3 objectives resulted

in slightly more stat. sig. results than the surrogate metric alone.

3.4 ANA in A/A Tests
In the previous three subsections, we have celebrated an increase

in the number of stat. sig. results when using ANA versus an unde-

composed analysis. However, it’s important to considerwhether this

increase in stat. sig. results coincides with an increase in type I error.

4
We can also use multiplicative decomposition with 𝑅 = 𝑀/𝑆 and Δ%(𝑀 ) =

Δ%(𝑆 ) +Δ%(𝑅) .
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Comp. 1 (Δ1) Comp. 2 (Δ2) No Decomposition (Δ) ANAc (Δ
∗
𝑐 ) ANAe (Δ

∗
𝑒 ) ANAv (Δ

∗
𝑣 ) ANAz (Δ

∗
𝑧 ) ANAp (Δ

∗
𝑝 )

Signal: Var[𝛿] 6.508 0.074 5.198

Noise: Var[𝜀] 2.810 5.321 8.133

Signal-Noise-Ratio 2.316 0.014 0.639
Proportion of Stat. Sig. 30/116 (25.9%) 5/116 (4.3%) 11/116 (9.5%) 30/116 (25.9%) 30/116 (25.9%) 30/116 (25.9%) 30/116 (25.9%) 30/116 (25.9%)

Table 2: Results of Application 2 (Natural Multiplicative Decomposition).

Comp. 1 (Δ1) Comp. 2 (Δ2) No Decomposition (Δ) ANAc (Δ
∗
𝑐 ) ANAe (Δ

∗
𝑒 ) ANAv (Δ

∗
𝑣 ) ANAz (Δ

∗
𝑧 ) ANAp (Δ

∗
𝑝 )

Signal: Var[𝛿] 1.011 0.352 0.585

Noise: Var[𝜀] 0.157 0.337 0.326

Signal-Noise-Ratio 6.456 1.044 1.794
Proportion of Stat. Sig. 55/133 (41.4%) 17/133 (12.8%) 34/133 (25.6%) 45/133 (33.8%) 45/133 (33.8%) 57/133 (42.9%) 58/133 (43.6%) 58/133 (43.6%)

Table 3: Results of Application 3 (Adjustment of a SurrogateMetric).

Figure 5: Optimal 𝜃 for various ANA objectives in Application 3.

Figure 6: Empirical distribution of p-values of an ANA estimator from 1000
A/A tests.

In this section we emphasize that ANA does not increase sensitivity

in general, it increases sensitivity to non-null effects. To demonstrate

that ANA does not inflate type I error, we simulated 1000 A/A tests

(where the treatment effect is truly null) and performed an ANA-

based analysis on each. In particular, we randomly split one experi-

ment’s data into pseudo treatment and control groups 1000 times and

computed p-values for𝐻0 :𝛿 =0when the estimator is taken to beΔ∗
𝑐

(i.e., ANA tomaximize correlation). Figure 6 shows that the p-values

for these tests were uniformly distributed as expected. The empirical

proportions of p-values less than 5% and 10% were respectively 0.05

and 0.105 and hence close to nominal. Though not shown here, other

augmentations yielded similar behavior. This should provide assur-

ance that ANA is not arbitrarily increasing the number of stat. sig.

results; it is instead increasing sensitivity to truly non-null effects.

4 Bayesian View onMetric Decomposition
Here we elaborate on the Bayesian motivation for metric decom-

position. In Section 4.1 we demonstrate theoretically and through

an example that metric decomposition reduces posterior variance.

And in Section 4.2, we use simulation to explore the circumstances

under which the variation reduction elicited by decomposition is

large or small.

4.1 Posterior Variance Reduction
Themethodology in Section 2, which is predicated on the random

effects model (4), is closely related to a Bayesian analysis where we

posit a prior distribution for 𝛿 and perform inference via posterior

analyses [6, 10, 14, 16, 24, 29]. It is well-known that the Bayesian

posterior mean will shrink the observed frequentist point estimate

towards the globalmeanof the prior,where the shrinkage factor is re-

lated to the signal-to-noise ratio. Given ametric decompositionwith

SNR disparity, the Bayesian posterior mean should shrink each com-

ponent very differently, resulting in a posterior mean that depends

more on high SNR components. Of interest is to investigate whether

this new posterior distribution exhibits reduced posterior variance.

We prove here that when we assume 𝜹 has a multivariate normal

prior with covariance matrix 𝚲, at least for the two-component case,

the posterior variance of 𝛿 conditioned on the bivariate vector 𝚫

cannot exceed the posterior variance of 𝛿 conditioned only on the

univariate Δ. This is also true for the general 𝑘 > 2 case when the

noise covariance matrices 𝚺 and 𝚲 are co-linear. These results are

established in Theorem 1 below.

Theorem 1. Metric decomposition naturally leads to variance re-
duction under the Bayesian framework with a Gaussian prior for 𝜹 .
The posterior variances of 𝛿 conditioned on 𝚫 = (Δ1,Δ2) and Δ are
respectively

Var[𝛿 |𝚫]=1⊺
𝑘
(𝚲−𝚲(𝚲+𝚺)−1

𝚲)1𝑘 ,

Var[𝛿 |Δ]=
1⊺
𝑘
𝚲1𝑘×1

⊺
𝑘
𝚺1𝑘

1⊺
𝑘
(𝚲+𝚺)1𝑘

.

When 𝑘 = 2, the posterior variance of 𝛿 = 𝛿1 + 𝛿2 under bivariate
decomposition cannot exceed the univariate posterior variance, i.e.,

Var[𝛿 |𝚫] ≤Var[𝛿 |Δ] . (12)

When 𝑘 ≥ 2 ∈N, the above inequality holds strictly when 𝚺=𝑞𝚲 for
some scalar constant 𝑞 ∈R.
The proof is provided in Appendix B. Even though we have not

provedthe inequality in (12) forgeneral𝑘 (without thestrongcollinear-

ity assumption), we conjecture the result holds under much milder

assumptions and leave this investigation for future theoretical de-

velopment.

Next we demonstrate this posterior variance reduction in the con-

text of Application 1 from Section 3.1. The results in that section
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corresponded to frequentist analyses, but we also analyzed each of

the 39 experiments from the Bayesian perspective, in line with Theo-

rem 1. As the theory suggests, the left panel in Figure 7 demonstrates

that with a Gaussian prior, the posterior variance is greatly reduced

with the bivariate decomposition compared to the univariate analy-

sis without decomposition. Furthermore, the right panel in Figure 7

also illustrates that the Bayesian Z-score (posterior mean divided by

posterior standard deviation) tends to have a larger magnitude un-

der the bivariate decomposition. However, this result does not hold

uniformly; 1 of the 39 experiments has a larger Z-score with the non-

decomposed analysis. Thus, Theorem 1 guarantees a variance reduc-

tion, but it does not guarantee an increase in power; sometimes the

reduction in the sizeof theposteriormeanmaybe substantial enough

to offset the variance reduction achieved with the decomposition.

Figure 7: Comparison of bivariate decomposed vs. univariate non-decomposed
models with respect to posterior variances (left) and Bayesian Z-scores (right).

4.2 Simulation
Illustrating the Benefit of Decomposition

In Section 4.1 we established that the posterior variance of 𝛿 when

conditioned on 𝚫 cannot be larger than when conditioned on Δ.
However, we did not explore what variation reduction is achievable

by decomposition, nor did we explore when the variation reduction

is negligible. The numerical study presented in this section provides

insights into this. Here we use a more helpful parameterization of

𝚲 and 𝚺:

𝚲=𝜆11

[
1

√
𝐾𝜌𝜆√

𝐾𝜌𝜆 𝐾

]
and𝚺=𝜆11

[
1/𝑆1

√︁
𝐾/(𝑆1𝑆2)𝜌Σ√︁

𝐾/(𝑆1𝑆2)𝜌Σ 𝐾/𝑆2

]
,

(13)

where 𝜆11 = Var[𝛿1], 𝐾 = Var[𝛿2]/𝜆11, 𝜌𝜆 = Corr[𝛿1, 𝛿2], 𝜌Σ =

Corr[𝜀1, 𝜀2], and 𝑆1 = Var[𝛿1]/Var[𝜀1] and 𝑆2 = Var[𝛿2]/Var[𝜀2]
are signal-to-noise ratios. We can freely vary these parameters and

still satisfy the Cauchy-Schwarz inequality.

Here we compare the posterior variances in the decomposed and

un-decomposed models for each combination of the following pa-

rameter values:

• 𝐾,𝑆1,𝑆2= {0.01,0.11,...,0.91,1.01,2,3,4,5}
• 𝜌𝜆,𝜌Σ= {−0.975,−0.925,...,0.975}
Because changing the value for 𝜆11 just scales 𝚲 and 𝚺 by the same

constant, we do not consider it in our simulations. For each of these

5.4×10
6
combinations, we computed the ratio of variances in the

posteriors that do and do not account for the bivariate decomposi-

tion. As expected, we found the variances to be equal when 𝜌𝜆 =𝜌Σ
and 𝑆1=𝑆2. Under these conditions, 𝚺=𝑞𝚲.

Across the 5.4×10
6
parameter combinations, we found that vari-

ance reduction is greatest when three conditions are satisfied: the

signal-to-noise ratios 𝑆1 and 𝑆2 differ substantially, |𝜌𝜆 | is large, and
|𝜌Σ | is large. To summarize, we visualize the magnitude of the vari-

ance reduction factorundervarious scenarioswhere theseconditions

are and are not satisfied. Figure 8 plots the density curves of the vari-

ance reduction factor under several scenarios with small and large

|𝜌𝜆 | and |𝜌Σ | when |𝑆1−𝑆2 |>2. In all such scenarios, the SNRs differ

substantially. As expected, the median reduction factor is largest in

the top left plot, where |𝜌𝜆 | and |𝜌Σ | are large. The plots on the off-
diagonals consider scenarios where only one of |𝜌𝜆 | or |𝜌Σ | is large.
Figure 8 suggests that strong correlation between 𝛿1 and 𝛿2 is more

beneficial thanstrongcorrelationbetween𝜀1 and𝜀2. Themedianvari-

ance reduction factor is smallest in the bottom right plot, where |𝜌𝜆 |
and |𝜌Σ | are small. Moreover, we find that when SNRs are relatively

similar (i.e., |𝑆1 −𝑆2 | < 0.1), analogous plots (See Appenix C) indi-

cate minimal variance reduction, nomatter the values of |𝜌𝜆 | or |𝜌Σ |.
These results suggest that discrepancies (or the lack thereof) between

the SNRs play a greater role than |𝜌𝜆 | or |𝜌Σ | in variance reduction.

Figure 8: Density curves of the variance reduction factor for several conditions
when signal-to-noise ratios differ substantially. Median reduction factors are
given by the dashed vertical lines and annotated text.

5 Conclusion &Discussion
In this paper we have proposed metric decomposition as a novel

means to improve metric sensitivity in online A/B tests. The idea

is premised upon the decomposition of a target metric into two or

more components that differ with respect to their signal-to-noise

ratios.We show through theory, simulation, and empirical examples

that if such a decomposition exists (or can be engineered), sensi-

tivity may be increased via approximately null augmentation (in a

frequentist setting) and posterior variance is reduced (in a Bayesian

setting). We provide practical guidance for, and discuss the implica-

tions of, metric decomposition in both settings. We also contrast it

with industry-favorite alternatives likeCUPED, and in doing so high-

light its broad utility. An important extension to this work would be

to next consider sample size determination in both the frequentist

or Bayesian contexts; while a boost in sensitivity typically means

less data is required for a given analysis, a methodology that deter-

mines the smallest sample size required to control various operating

characteristics in this context would be of practical value.
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Appendix
A ANADerivations

Consider ANA estimators Δ∗
:=𝒄⊺𝚫, where 𝒄⊺𝒆1=1 for the stan-

dard basis vector 𝒆1. Let 𝒄∗ be the final 𝑘−1 components of 𝒄 and 𝚲∗
be the (𝑘−1) × (𝑘−1) submatrix of 𝚲 corresponding to (𝛿2, ...,𝛿𝑘 ).
Let 𝚺∗ and be the (𝑘−1)× (𝑘−1) submatrix of 𝚺 corresponding to

(𝜀2,...,𝜀𝑘 ). Let 𝚺1= (Σ12,...,Σ1𝑘 ).
MinimizingMean Squared Error.We have that

E

[
(𝛿−Δ∗)2

]
=E

[
(1⊺

𝑘
𝜹−𝒄⊺ (𝜹+𝜺))2

]
=E

[
((1𝑘−𝒄)⊺𝜹−𝒄⊺𝜺)2

]
=E[((1𝑘−𝒄)⊺𝜹𝜹⊺ (1𝑘−𝒄)−2(1𝑘−𝒄)⊺𝜹𝜺⊺𝒄+𝒄⊺𝜺𝜺⊺𝒄]
= (1𝑘−𝒄)⊺𝚲(1𝑘−𝒄)+𝒄⊺𝚺𝒄
= (1𝑘−1

−𝒄∗)⊺𝚲∗ (1𝑘−1
−𝒄∗)+Σ11+2𝒄

⊺
∗ 𝚺1+𝒄⊺∗ 𝚺∗𝒄∗ .

(A.1)

The penultimate step follows because 𝜹 and 𝜺 are independent, and
the final equality holds because 𝒄⊺𝒆1=1. The derivative of (A.1)with

respect to 𝒄∗ is
𝜕

𝜕𝒄∗
E

[
(𝛿−Δ∗)2

]
=−2𝚲∗ (1𝑘−1

−𝒄∗)+2𝚺1+2𝚺∗𝒄∗ . (A.2)

The value for 𝒄∗ that equates the expression in (A.2) to 0 and hence
minimizes mean squared error is

𝒄∗=
[
𝚲∗+𝚺∗

]−1
[
𝚲∗1𝑘−1

−𝚺1

]
. (A.3)

The value of 𝜃 given in (6) is obtained as a special case when 𝑘 = 2

and 𝒄 = (1,𝜃 )⊺ . □
Maximizing Correlation.We have that

Corr

(
𝛿,Δ∗) = Cov(1⊺

𝑘
𝜹,𝒄⊺𝚫)√︃

Var(1⊺
𝑘
𝜹)

√︁
Var(𝒄⊺𝚫)

=
1⊺
𝑘
𝚲𝒄√︃

1⊺
𝑘
𝚲1𝑘

√︁
𝒄⊺ (𝚲+𝚺)𝒄

.

(A.4)

To maximize (A.4), we take the partial derivative

𝜕

𝜕𝒄

(1⊺
𝑘
𝚲𝒄)2

𝒄⊺ (𝚲+𝚺)𝒄 =
2(1⊺

𝑘
𝚲𝒄)𝚲1𝑘 𝒄⊺ (𝚲+𝚺)𝒄−2(𝚲+𝚺)𝒄 (1⊺

𝑘
𝚲𝒄)2

(𝒄⊺ (𝚲+𝚺)𝒄)2
.

(A.5)

Equating the numerator of (A.5) to 0 prompts the following result:

(𝚲+𝚺)−1
𝚲1𝑘 =

1⊺
𝑘
𝚲𝒄

𝒄⊺ (𝚲+𝚺)𝒄 ×𝒄 .
(A.6)

Since the scaling constant to the left of the × sign in (A.6) is ap-

plied to each component of 𝒄 , we have that 𝑺⊺1𝑘 ∝𝒄 . To enforce the
constraint that 𝒄⊺𝒆1=1, we require

𝒄 =
1

𝒆
⊺
1
𝑺⊺1𝑘

𝑺⊺1𝑘 . (A.7)

This is the augmentation that maximizes correlation. The value of 𝜃

given in (7) is obtained as a special casewhen𝑘 =2 and 𝒄 = (1,𝜃 )⊺ . □
Minimizing Error Variance. We have that

Var[𝒄⊺𝜺]=𝒄⊺𝚺𝒄
=Σ11+2𝒄

⊺
∗ 𝚺1+𝒄⊺∗ 𝚺∗𝒄∗

(A.8)

https://www.microsoft.com/en-us/research/group/experimentation-platform-exp/articles/deep-dive-into-variance-reduction/
https://www.microsoft.com/en-us/research/group/experimentation-platform-exp/articles/deep-dive-into-variance-reduction/
https://tecunningham.github.io/posts/2023-04-18-experiment-interpretation-extrapolation.html
https://tecunningham.github.io/posts/2023-04-18-experiment-interpretation-extrapolation.html
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The final equality holds because 𝒄⊺𝒆1 = 1. The derivative of (A.8)

with respect to 𝒄∗ is
𝜕

𝜕𝒄∗
Var[𝒄⊺𝜺]=2(𝚺1+𝚺∗𝒄∗). (A.9)

The value for 𝒄∗ that equates the expression in (A.9) to 0 and hence
minimizes the error variance is

𝒄∗=−𝚺−1

∗ 𝚺1 . (A.10)

The value of 𝜃 given in (8) is obtained as a special case when 𝑘 = 2

and 𝒄 = (1,𝜃 )⊺ . □
Maximizing Expected Squared Z-Score. The expected squared

Z-score has the form:

Var[Δ∗]
Var[𝒄⊺𝜺] =

𝒄⊺ (𝚲+𝚺)𝒄
𝒄⊺𝚺𝒄

=
[𝚺1/2𝒄]⊺ [𝚺−1/2 (𝚲+𝚺)𝚺−1/2] [𝚺1/2𝒄]

[𝚺1/2𝒄]⊺ [𝚺1/2𝒄]
.

(A.11)

Let 𝒙 =𝚺1/2𝒄 , and (A.11) is a Rayleigh quotient maximizedwhen 𝒙 is

anymultiple of thefirst eigenvector of thematrix𝚺
−1/2 (𝚲+𝚺)𝚺−1/2

.

Let 𝒙∗ be this eigenvector. Then it is easy to see

𝒄 =
1

𝒆
⊺
1 𝚺

−1/2𝒙∗
𝚺
−1/2𝒙∗ . (A.12)

The value of 𝜃 given in (9) is obtained as a special case when 𝑘 = 2

and 𝒄 = (1,𝜃 )⊺ . □
Maximizing Power. For a specific value ¤𝜹 = ( ¤𝛿1,..., ¤𝛿⊺𝑘 ) from the

𝜹 distribution specified by model (4), the test statistic for testing

𝐻0 :𝛿 =0 is given by

𝒄⊺ ¤𝜹
√
𝒄⊺𝚺𝒄

=
¤𝛿1+𝒄⊺∗ ¤𝜹∗√︁

Σ11+2𝒄
⊺
∗ 𝚺1+𝒄⊺∗ 𝚺∗𝒄∗

(A.13)

where
¤𝜹∗ is the final 𝑘 − 1 components of

¤𝜹 . This equality holds

because 𝒄⊺𝒆1=1. The derivative of (A.13) with respect to 𝒄∗ is
¤𝜹⊺∗ (Σ11+2𝒄

⊺
∗ 𝚺1+𝒄⊺∗ 𝚺∗𝒄∗)−( ¤𝛿1+𝒄⊺∗ ¤𝜹∗) (𝚺⊺

1
+𝒄⊺∗ 𝚺∗)

(Σ11+2𝒄
⊺
∗ 𝚺1+𝒄⊺∗ 𝚺∗𝒄∗)3/2

(A.14)

The value for 𝒄∗ that equates the expression in (A.14) to 0 and hence
maximizes power is

𝒄∗=−
[
𝚺1

¤𝜹⊺∗ − ¤𝛿1𝚺∗
]−1

[
Σ11

¤𝜹∗− ¤𝛿1𝚺1

]
. (A.15)

The value of 𝜃 given in (10) is obtained as a special case when 𝑘 =2

and 𝒄 = (1,𝜃 )⊺ . □

B Proof of Theorem 1
For this proof, we use the following parameterization for 𝚲 and 𝚺:

𝚲=

[
𝐿2 𝐿

√
𝜆22𝜌𝜆

𝐿
√
𝜆22𝜌𝜆 𝜆22

]
and 𝚺=

[
Σ11 Σ12

Σ12 Σ22

]
.

That is, 𝐿=
√
𝜆11. This parameterization allows us to freely vary 𝐿

across R+ while satisfying the Cauchy-Schwarz inequality. We now

show that each side of the inequality in (12) can be expressed as the

ratio of two quadratic functions of 𝐿.

For the left side of (12), we show that 1⊺
2
(𝚲−𝚲(𝚲+𝚺)−1

𝚲)12 takes

the form

𝑏1𝐿
2+𝑏2𝐿+𝑏3

𝑏4𝐿
2+𝑏5𝐿+𝑏6

. (B.1)

Through simple algebra, we can show that 𝑏1 = 𝜆22 (1−𝜌2

𝜆
) (Σ11 +

2Σ12 + Σ22) + Σ11Σ22 − Σ2

12
, 𝑏2 = 2

√
𝜆22𝜌𝜆 (Σ11Σ22 − Σ2

12
), and 𝑏3 =

𝜆22 (Σ11Σ22−Σ2

12
). The denominator of (B.1) is the determinant of

𝚲+𝚺; it takes the form 𝑏4𝐿
2+𝑏5𝐿+𝑏6, where 𝑏4 =𝜆22 (1−𝜌2

𝜆
)+Σ22,

𝑏5=−2

√
𝜆22𝜌𝜆Σ12, and 𝑏6=Σ11𝜆22+Σ11Σ22−Σ2

12
.

The algebra is simpler to show the right side of (12) takes the form

𝑏7𝐿
2+𝑏8𝐿+𝑏9

𝑏10𝐿
2+𝑏11𝐿+𝑏12

. (B.2)

That numerator 1⊺
2
𝚲12 ×1⊺

2
𝚺12 is such that 𝑏7 = Σ11 +2Σ12 +Σ22,

𝑏8 =2

√
𝜆22𝜌𝜆 (Σ11+2Σ12+Σ22), and 𝑏9 =𝜆22 (Σ11+2Σ12+Σ22). That

denominator 1⊺
2
(𝚲 + 𝚺)12 can be expressed as 𝑏10𝐿

2 +𝑏11𝐿 +𝑏12,

where 𝑏10=1, 𝑏11=2

√
𝜆22𝜌𝜆 , and 𝑏12=𝜆22+Σ11+2Σ12+Σ22. The de-

nominator of (B.1) must be non-negative due to the Cauchy Schwarz

inequality:𝑏4𝐿
2+𝑏5𝐿+𝑏6 ≥ 0 forall𝐿≥ 0.Moreover, thedenominator

of (B.2) is a variance, so 𝑏10𝐿
2+𝑏11𝐿+𝑏12 ≥ 0 for all 𝐿≥ 0.

We can therefore cross multiply the fractions in (B.1) and (B.2) to

obtain an equivalent inequality to (12) that is a quartic equation of 𝐿:

𝑎𝐿4+𝑏𝐿3+𝑐𝐿2+𝑑𝐿+𝑒 ≥ 0, (B.3)

where 𝑎 = (Σ12 + Σ22)2 ≥ 0, 𝑏 = 2

√
𝜆22𝜌𝜆 (Σ22 − Σ11) (Σ12 + Σ22),

𝑐 =𝜆22 (𝜌2

𝜆
(Σ11−Σ22)2−2(Σ11+Σ12) (Σ12+Σ22)), 𝑑 =2𝜆

3/2

22
𝜌𝜆 (Σ11−

Σ22) (Σ11+Σ12), and𝑒 =𝜆2

22
(Σ11+Σ12)2

. If (B.3)holds true forall𝐿≥ 0,

then thebivariatevarianceof𝛿 cannot exceed theunivariatevariance

(i.e., the inequality in (12) also holds true). It can be shownvia algebra

that the coefficients in (B.3) satisfy 𝐷 = 64𝑎3𝑒 − 16𝑎2𝑐2 + 16𝑎𝑏2𝑐 −
16𝑎2𝑏𝑑−3𝑏4=0. This result implies that (B.3) has two double roots.

Because the leading coefficient 𝑎≥ 0, the quartic equation in (B.3) is

non-negative for all𝐿≥ 0. Theorem1 follows directly from this result.

□

C Additional Simulation Plot

Figure 9: Density curves of the variance reduction factor for several conditions
when signal-to-noise ratios do not differ substantially. Median reduction
factors are given by the dashed vertical lines and annotated text.
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